
Tracing SRAM Separatrix for Dynamic Noise Margin Analysis under Device Mismatch

Garng M. Huang, Wei Dong, Yenpo Ho, Peng Li

Department of ECE Texas A&M University {ghuang, weidong, ypho, pli}@neo.tamu.edu

Motivation

- SRAM designs become increasingly susceptible to soft errors.
 - Various noise injection mechanisms
 - Power supply noises, substrate noises, single event upsets (**SEU**)

• It is important to evaluate the stability of an SRAM cell.

- static noise margins (SNM)
- dynamic noise margins (DNM).
- It is crucial to evaluate the impacts of process variations.
 - Introduce significant parameter fluctuations.
 - Lead to asymmetry into SRAM.

Motivation

• DNM provides a more realistic stability analysis.

- SNM finds the maximum tolerable amplitude of V & I.
- SNM neglects the important issues.
 - Temporal pattern of the injected noise
 - The SRAM nonlinear dynamics.

DNM becomes more involved compared with SNM.

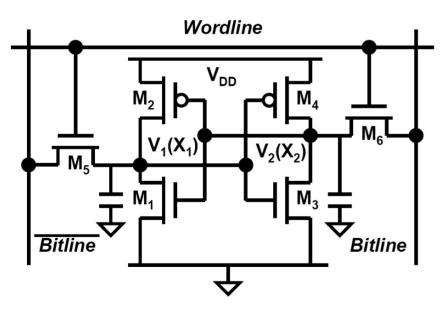
- One critical component is the determination of stability boundary (Separatrix).
- The separatrix significantly deviates under the process variations.
- Requires a full consideration of the complex nonlinear dynamics.

Prior Work

- Statistical process variations have been considered under the context of *static noise margin*.
 [K.Agarwal, S.R.Nassif, DAC06]
- A dynamic noise margin model has been proposed based on the assumption *that the separatrix remains the same even under device mismatch*.

[B.Zhang, et, al, ICCAD06]

Our Work


- Rigorously apply a nonlinear system theory to compute the separatrix.
 - An efficient approach with the SPICE- level accuracy.
 - Only 2 transient analyses on a *modified* set of circuit equations.
- The proposed approach has been implemented in a transistor-level SPICE-like simulator.
- Leads to up to 10³X speedup for the separatrix computation compared to the brute-force method.

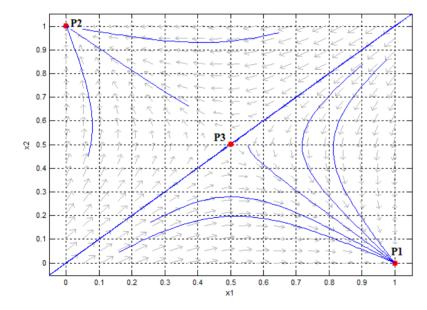
Outline

- Motivation
- Proposed approach
 - Phase portrait of SRAM cell
 - System-theoretical analysis
 - Algorithm to trace the separatrix
- Experimental Results
- Conclusion

6

 The output voltage V₁(X₁) and its complement V₂(X₂) of a standard 6-T SRAM cell form the state space vector of the nonlinear dynamical system.

A standard 6-T SRAM cell.

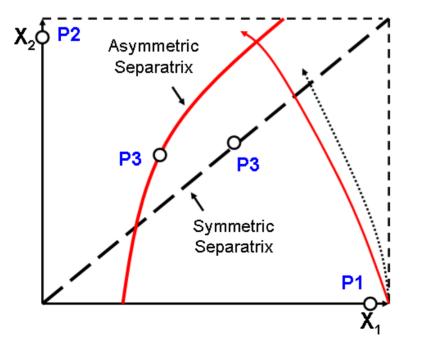

The behavior of the SRAM cell

$$\begin{cases} \partial x_1(t) / \partial t = f(x_1, x_2) \\ \partial x_2(t) / \partial t = g(x_1, x_2) \end{cases}$$

f(*) and g(*) : certain nonlinear functions describing circuit nonlinearities.

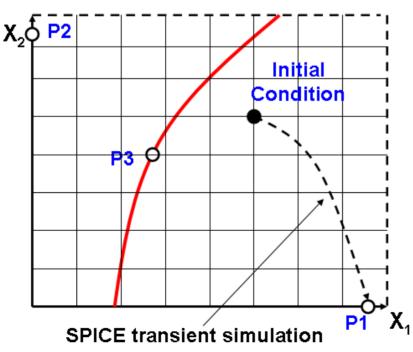
• A phase portrait on the 2-D x₁-x₂ state space

- 2 stable equilibrium (P1 and P2) & 1 meta-stable equilibrium (P3)
- Separatrix is a 45 degree line passing through the origin and P3.



- Supply voltage : 1 V
- ➢ P1(x1=1, x2=0), P2(x1=0, x2=1)
- > P1 & P2 correspond to the "one"

& "zero" states.

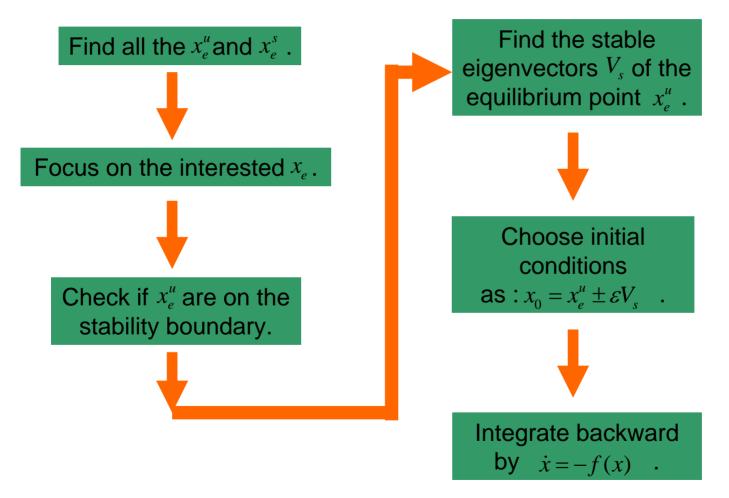

- Assume certain noise is injected, the state may be pushed away.
 - For small noise, the state will be attracted back
 - For large noise, the state will flip

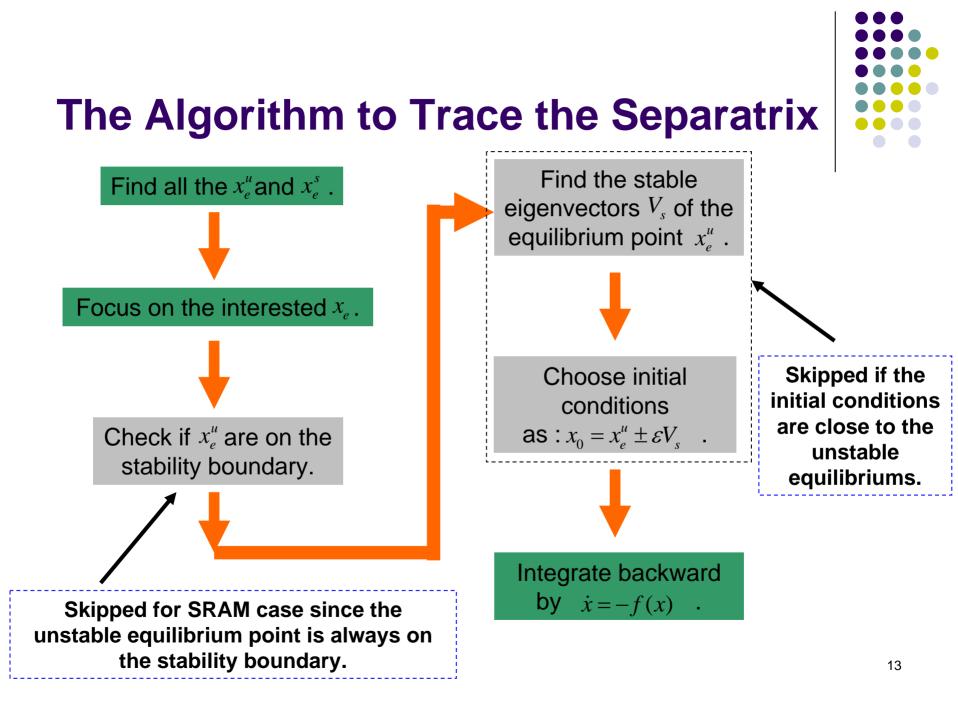
- Due to unavoidable process variations, the separatrix can deviate significantly from the symmetrical case.
 - The separatrix does not appear to be a straight line.
 - Errors occur if using linear approximation.
 - Deviation from the linear approximation plays an important role.
 - Any shift of the separatrix will change minimum noise amplitude.

Perturbation of the separatrix and its impact on DNM

- A brute-force state space sampling method for finding the separatrix.
 - Densely sampled using grids.
 - Each grid point is treated as an initial condition.
 - Transient state trajectory ends up at either of the 2 stable equilibriums.

Computationally inefficient due to the large number of transient simulation runs !!


System-theoretical Analysis



- Equilibrium points : all the x_e 's that satisfy $f(x_e)=0$.
 - A given dynamic equation : dx/dt=f(x)
- Stable Manifold : $W^{s}(x_{e}) = \{x \in \mathbb{R}^{N} \mid \lim_{t \to \infty} \phi(t, x) = x_{e}\}$
 - $\phi(t, x)$: the trajectory that starts from x and converges to x_e .
- Stability Boundary (Separatrix) : $\partial A = \overline{\bigcup W^s(x_e^u)}$
 - x_e^u : the unstable equilibrium on the boundary of A.
 - Start in a small neighborhood of x_e^u along the stable eigenvector directions to integrate reversely to find the stable manifolds.

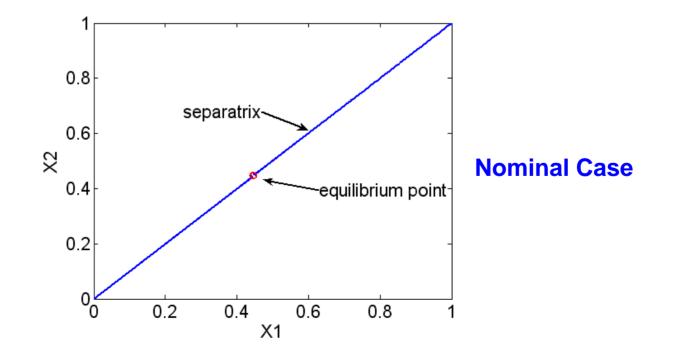
The Algorithm to Trace the Separatrix

Implementation Issues

- To find the unstable equilibrium point of a SRAM design, a nonlinear DC analysis is applied.
- A small perturbation (△P) is introduced around the unstable equilibrium.
- Transient analysis is applied to the modified system ($\dot{x} = -f(x)$).
- A small perturbation ($-\Delta P$) in the opposite direction is introduced around the unstable equilibrium.
- A second transient analysis is applied.
- Our algorithm requires one DC analysis followed by two transient analyses.

Experiments

- The proposed tracing algorithm is implemented as a part of transistor-level SPICE-like circuit simulator.
 - Using C++ running on Linux platform
 - Level-3 SPICE device model for circuit simulation
 - The device model parameters are listed as below.


Table-1. 45nm process parameters.

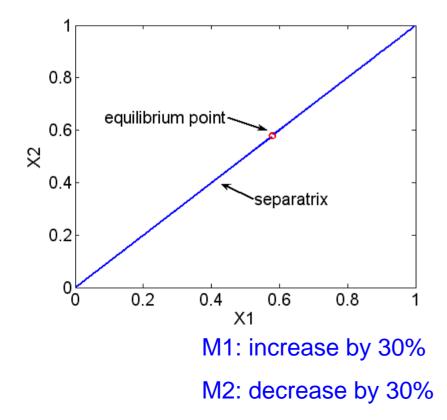
Туре	U0	Tox	GAMMA	THETA
NMOS	0.05255	1.75e-9	0.2	0.5
PMOS	0.00696	1.85e-9	0.2	0.3

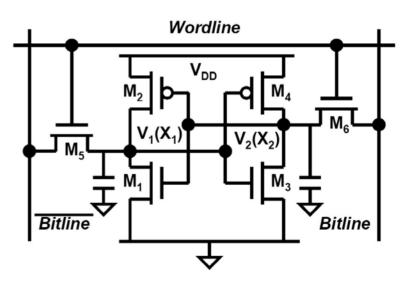
• Verify the *accuracy* and *efficiency* of the proposed algorithm for tracing separatrix.

- Find the separatrix of a nominal SRAM design
 - The meta-stable equilibrium point (0.4465, 0.4465) is determined from the DC analysis.
 - The separatrix is traced using the proposed algorithm.

• The efficiency and accuracy for our proposed method.

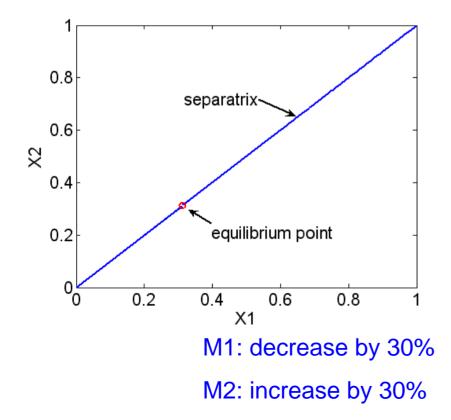
- 1 min. for the nominal SRAM case (find the meta-stable equilibrium point and trace the separatrix)
- The accuracy is mainly determined by the time step control in simulator.

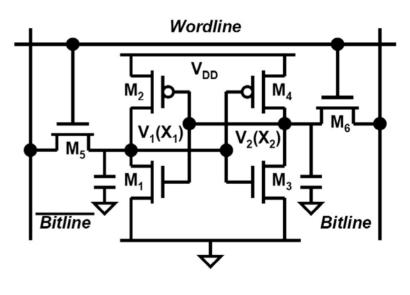

• The time cost and accuracy for the brute-force method.


- Assume one transient simulation costs about 14 secs, 10000 transient simulations need 38 hours (100 x 100 grid).
- The accuracy is confined by the number of grids used to sample.
- Our proposed method is much more efficient than the brute-force method.

Evaluate the impacts of process variations.

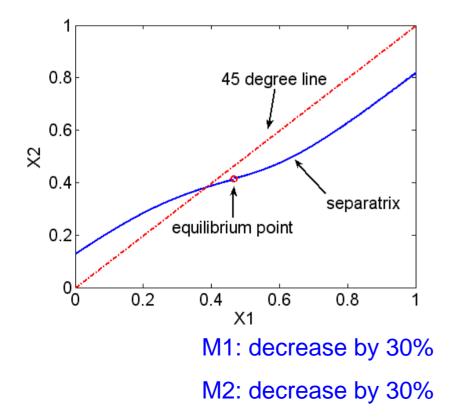
- Threshold voltage variation
 - Case 1 : The meta-stable equilibrium point (0.5801, 0.5801)

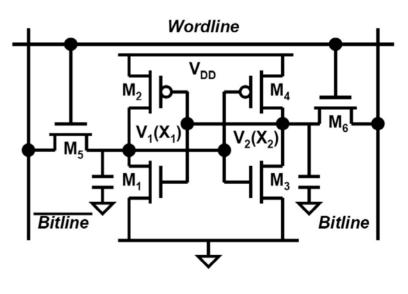



M3: increase by 30% M4: decrease by 30%

• Evaluate the impacts of process variations.

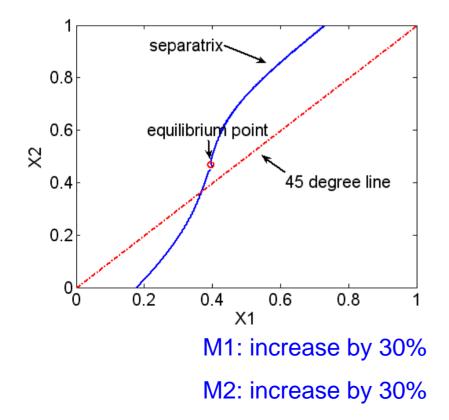
- Threshold voltage variation
 - Case 2 : The meta-stable equilibrium point (0.3129, 0.3129)

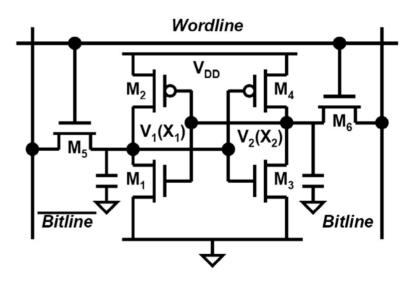



M3: decrease by 30% M4: increase by 30%

• Evaluate the impacts of process variations.

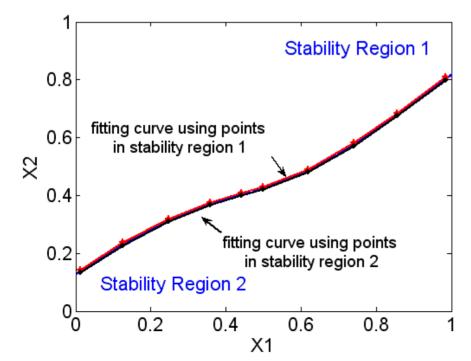
- Threshold voltage variation
 - Case 3 : The meta-stable equilibrium point (0.4668, 0.4141)




M3: increase by 30% M4: increase by 30%

Evaluate the impacts of process variations.

- Threshold voltage & effective channel length variation
 - Case 4 : The meta-stable equilibrium point (0.3944, 0.4989)

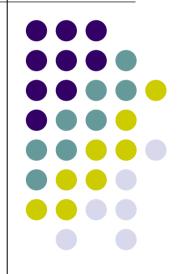


M3: decrease by 30% M4: decrease by 30%

• Verify the accuracy of the computed separatrix.

- Select 10 points from each side of the separatrix.
 - Close to the separatrix.
- Run transient simulations by taking these points as initial values.
 - Each trajectory ends up at the correct stable equilibrium.

Good accuracy of the computed separatrix !



- An efficient SRAM stability boundary (separatrix) tracing algorithm is presented.
- Our proposed algorithm is based on a rigorous nonlinear system theory.
- Quickly find the non-ideal separatrix by performing transient analysis based tracing.
- Provides useful insight to SRAM dynamic stability margin when process variation is introduced.

Thanks

Any Question ?

