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Quad-core
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Transfer function

LTT (linear, time-invariant systems)

input signal X(t) and output y(t)

Y(s)=H(s)X(s)

or

H(s):%

where H(s) is the transfer function of the LTI system
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Impulse responses and pole-
residue representation

e Pole-zero

H (s) = b, +b15+---+bm5n
1+as+...+a,S

H(s) = K (s—z,)-(s—2,)...(s-z,)
(s—p)-(s—py)..(s—p,)

e Pole-residue and impulse response in time
domain

h(t) = ki exp(tpi)
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Concepts of Matrix Pencil

e Matrix pencil
M(z) =Y, —1zY,

where z is a scalar valuable, Y1 and Y2 are two (square or rectangular )
matrices.

M(z) decreases its rank by one if only if z is the generalized eigenvalues
of M, which contain the desired information about the system like directions

of the wave arrivals and the signal poles (thus the poles of the system, which
generates the signals).

e Pencil-of-function
f(t,z) = g(t) + zh(t)
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General pencil-of-function method

e Used for extracting poles and residues

from transient signals.

M
Ve = D1 exp(pAtk)
=1

k=0,1, ..., N-1,
r. are the complex residues,

p; are the complex poles,

At 1s the sampling interval.
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N: # of samples

L: window size for GPOF,.
i.e. number of samples used
in GPOF.

M: # of poles used in the
model.



General pencil-of-function method

e Define following pof as

Yo _;tyy Y1_AY2 1 yM—l_ﬂ“yM
e Define Y, and Y, as
[ x(1) x(2) e x(l) } Z,=diag(z;,25,...,2m],

x(2) x(3) - x(L+1)
R =diag[R,,R,,...,Ryl].

x(N=L) x(N=L+1) - x(N—1)
(3.3)

[ £(0) x(1) .- x(Ll)]
_ x(1) x(2) -+« x(L)
Y, = : : : ,

: : : Then, we have
x(N-L—-1) x(N-L) --- x(N—-2)

Y, —\Y,=Z,R(Z,— \I)Z,.

So, the rank of matrix pencil reduces one when 4 becomes z, which
is the poles in the z-domain ( Z; =exp(Atp;)) as Y1 and Y2 span the same

Subspaces of sampled signals.
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ALGORITHM: GPOF
Input: sampling vectors ¥; = [yi, ¥it1,-o0r Yis N—L—_1]"
Output: poles vector p and residues vector r

1. Construct matrices Y7 and Ya.
}Fl — :}rﬂv ¥i...44 }rL—l] }'-2 — :}rl:l ¥ao,..0s }FL]

Singular value decomposition (SVD) of Y. Y, =

b

3. Construct matrix Z£. 2 = D_lUHYFQV

4. Eigen-decomposition of Z. Zg = eig(Z)

logi(zg)

UpvH

find poles vector: p; = —=3
5. Solve R1 and Rz from Y1 = Z1RZ: and Yo = Z1 RZp 2.
r 1 1 1
=1 z92 =M -‘
Z]_ — . . . |
_N—-L-1 _N-L-1 _rN—L—lj
_-‘-'1 .4-2 k;“'.-_{
B L—17
1 zq zy
Loy = )
L—1
1 =M Zar
find residues vector: r = Rl;LRQ
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General Pencil of Function Method
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How to choose M and L

e M is model order number.
e L is sampling window size.
e N is the number of total sampled points.

e For GPOF, M = L < N-M. Allow different
window sizes and pole numbers.

e Typically, choosing L = N/2 and M = L can
yield better results.
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Sampling issue

e [raditional MP using constant interval time
for sampling.

e Temperature increase dramatically fast in the first
few seconds.

e |og-scale sampling is a good way.

e Numerical differentiation for computing
Impulse response.

e Need to compute the impulse response instead of
step responses, which are given.
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Linear vs Log-scale o
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Numerical Differential and

Stabilization (1)

e Stable pole extraction

Unstable impulse response
T T

Temperature (°C)

(a) Extracted impulse re-
sponse with positive poles

Temperature (C)
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(b) Extracted impulse re-
sponse with only negative
poles
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Numerical Differential and
Stabilization (2)

Impulse and step
responses
without starting
time truncation.

Impulse and step
responses with
starting time
truncation.
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Training

e Extracting 5 groups of poles and residues
using matrix pencil method.

e Obtaining the transfer function of the system.

e Simulating the output of the system (thermal
simulation).

e Linear combination
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Simulation result (1)
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CoreQ’s temperature increase curve, when all the
cores and cache are active (driven by 20W powers).
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Simulation result (2)
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Simulation result (3)

Table 1: Difference when temperatures achieve the
steady state

Measured Computed Difference

Temp. (°C) | Temp. (°C) | percentage
Core0 88.96 88.78 0.22%
Corel 90.60 90.52 0.08%
Core2 90.04 88.94 0.11%
Core3 88.96 88.78 0.20%
Cache 68.46 68.32 0.20%
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Simulation result (4)

Table 2: Features of the difference between measured and computed temperatures
Difference (°C) Difference percentage
Maximum | Mean | Std. deviation | Maximum | On average

Corel) 0.46 0.25 0.08 0.89% 0.32%
Corel 0.27 0.18 0.07 0.42% 0.15%
Core?2 0.37 0.16 0.08 0.73% 0.20%
Core3 0.46 0.24 0.08 0.88% 0.31%
Cache 0.31 0.16 0.08 0.51% 0.26%

The maximum difference is less than and for all

the cores.

The average difference is less than and for

all the cores.
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Conclusion

e Efficient on-chip thermal analysis technique is
required for on-chip dynamic thermal
management study and run-timing DTM.

e Developed a new estimation method to
compute real microprocessor Function Units’
power.

e Developed behavioral thermal modeling
technigues based on general pencil-of-
function method.
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