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ABSTRACT
A rigorous approach for quantifying the completeness of 

design verification for mixed-signal circuits is proposed.  

A metric, Enclosure, is proposed. A methodology for its 

measurement is described, using Verilog-A wrappers and 

commercial simulators to capture observation data in an 

XML format. A prototype Observation Specification 

Language is used as a simple description to specify the 

contents of verification wrappers or instrumentation 

modules, allowing the necessary automation. A tool to 

build the instrumentation modules from this description is 

developed in perl.  Using a CML-Buffer circuit as an 

example, the resulting data is presented in a format useful 

for guiding the verification effort.     

1.  INTRODUCTION 
A high fraction of design bugs identified in Mixed-Signal 

integrated circuits are attributed to the Analog or Mixed-

Signal sections or to the interfaces to these sections[9,10]. 

While the digital design verification approach  uses the 

concept of “coverage” for determining how much of the 

verification has been done, the analog approach has been 

primarily “running corners” on a couple of the top level 

simulations, and carefully crafting checklists to record all 

the simulations that need to be run[6]. The fact that these 

simulations take the longest to run doesn't help matters 

much.   

Many solutions to these issues have been tried, each 

improving the situation a little bit. Simulator vendors tend 

to focus on improving simulator throughput, while design 

managers may focus more on making better checklists, 

and trying to manage all the results. Digital design teams 

are extending the Coverage metric to include the mixed 

signal interface[4,11,12], and mixed-signal behavioral 

models can be utilized to speed up functional 

simulation[7,10,13], and report problems[13] but none of 

these have proposed a verification methodology that 

really deals with the analog circuits and all their 

complexities.  

As we look towards Analog verification, the number of 

parameters involved quickly leads to the conclusion that 

this is a problem of much larger dimensions than is 

typical for digital. While a logic gate will typically have 

min, typical and max timing based on all the process, 

voltage and temperature conditions, in analog, we will 

typically have to evaluate design performance for 

multiple supply voltages, one or more bias currents, best 

and worst case corners for several types of transistors, 

resistors, capacitors and inductors, and analog and digital 

control signals. Since this is a problem of larger 

dimensions, well adopt a terminology of volume, rather 

than area. We propose to call our metric of analog/mixed-

signal verification, “enclosure”[8] in contrast to the digital 

verification metric of “coverage”[3].  

In addition to the factors that affect the actual circuit 

performance, we include in our dimensions both the 

context in which the  unit is simulated (Unit level, block 

level, or top level) and the design representation used. 

(behavioral, schematic, or with extracted parasitics). 

These will factor into the interpretation of the verification 

score [see page 6 ].  

Traditionally analog simulators write their results based 

on the design hierarchy of the testbench. not by the circuit 

being tested, requiring development of a unique set of 

save, measure or other postprocessing commands, for 

each testbench. For this methodology, we'll create a 

“wrapper” module that can be instantiated around the 

design, in every testbench run, that will capture all the 

data we will use in our enclosure analysis, into files of 

our own format.    

In selecting a format for the captured data, we need to 

consider both the capabilities of Verilog-A/AMS[1,2] to 

write the data, and the program that will analyze the data 

and generate our enclosure report. Rather than create our 

own data format, we'll use XML[5] as our data language 

for its clear structure, easily parsed by software programs, 
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and its internally documented readability, for trouble-

shooting when things go wrong.

2. METHODOLOGY
Instrumenting our design with verification wrappers, the 

output data will record “points” of observation in the 

multi-dimensioned design space. From these point we 

determine a volume of enclosure, and compare this to the 

total volume of that design space.   

2.1  Design Enclosure 
The enclosure metric[8] is defined as the ratio of the 

volume enclosed by the shape connecting our observation 

points, to the total volume defined by the shape 

connecting the points at the  extremes of the allowed 

range of the observation variables. It should be noted that 

running a “best”, “worst” and “typical” set of simulations, 

will generate only 3 points, which can at best  define a 

plane the in 3-dimensional space of “Process, Voltage and 

Temperature.” Since the purpose of this metric is to help 

us  improve the quality of our verification, we'll define a 

“fallback”  metric, based on the difference between the 

dimension of the total volume, and the volume enclosed. 

For the case where 3 of  5 dimensions are enclosed (for 

an enclosure in the 3 dimensions  of 50%) we'll note that 

the enclosure  is 50%-2  In the other extreme, where 

randomness is introduced into the simulations, we may 

have to measure a density of observation, rather than just 

simple enclosure.  

Rather than simply accepting this a  problem in 10 or 20 

dimensions, it helps to classify the dimensions in a 

reasonable scheme, if for no other reason that is will 

simplify our wrapper development.   The variables in the 

first category are those that account for manufacturing 

variations, or “process” variables. Both supply voltage 

and temperature are “environment” variables, but to this 

category, for most circuits,  we add bias currents. A third 

Category will include digital control bits, as well as 

analog control signals. While we will generally expect the 

“control”s to be static, when the change is large enough, 

we should record a new observation point. Output values, 

or characteristics of the circuit itself, or its signal path, we 

will classify as “measures.” For the purpose of our 

prototype design verification environment, we will not 

factor “measures” into the observation volume.  

2.2  Design Instrumentation For Enclosure 

Measurement 
Following the example of PSL's early development [3], 

we will use a Verilog-A/AMS[21] language wrapper 

module to capture all of the data. By separating the 

function of data capture from the actual design, we allow 

for several representations of the design module to be 

used in the simulation, with minimal impact to the 

wrapper and the data format.  In our methodology, we use 

a separate “vamsunit” as the source for our wrapper, but 

with all the statements hidden as comments from the 

simulator, we could put the specification in a behavioral 

model just as well.  

 By using Verilog, we eliminate dependence on a 

particular simulator. While all the development of this 

methodology has been done with the SPECTRE® 

simulator, we expect to be able to use these wrappers in 

AMS Designer, (and other Verilog simulators) with 

changes only where signals are represented as logic, or 

wreal.

The actual wrapper creates internal pins (and zero volt 

sources) for interfaces where current measures are 

needed, otherwise connecting the DUT directly to the 

external interfaces. In our prototype we need information 

about the process point being simulated. In order to keep 

this information in one file, we have added process 

monitor subcircuits to the model files, and instaniate them 

in our wrapper. The remaining behavior in the wrapper 

model is just that needed to capture the data we want in 

our observation point. It is expected that simulators, 

which already have access to this information internally,  

would eventually provide a native capability for a similar 

capability, once this methodology proves its value.

2.3  Observation Data Format 
Four considerations drove the format selection. First, we 

needed a way to associate each measurement with the 

conditions under which it was measured, while encoding 

those conditions (supply voltages, temperature, process 

info, and control conditions) with every single 

measurement would insert an extreme amount of 

redundant data in the format. Second, we require a data 

format that is relatively free-form, as the conditions and 

measurements from different blocks, will vary 

significantly. Third, we wanted a format that could be 

produced from any relevant tool, not just these wrappers, 

so that this methodology could be easily extended to 

include the output of those tools. Finally, we want a 

format that can be viewed/ and interpreted directly, to 

simplify the development process. XML[5], a self-

describing, tree structured data format, fits all of these 

needs, and can even be viewed directly as text, or in most 

web-browsers.

The observations are grouped into “points” , consisting of 

a set of conditions info, and the measurements associated 

with those conditions. For each unit recorded we want the 

SAME condition items recorded each time. For ease of 

use, we classify condition items into 3 categories; 

environment, process, and controls. In the XML tree 

structure, an observation includes 1 or more points, each 

of which have conditions (environment, process, controls)  

and measurements. Within each of these categories, there 

are specific types of information allowed/or expected. 
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The environment category allows; temperature, supply, 

reference (1 only) and bias elements. The process 

category allows the “section” element.  The control 

category allows realsig, realdiffsig and the binsig 

elements. Elements in the measurement category include 

Iq, Vds, gain, amplitude and delay as shown in Listing 1.

Listing 1 Sample Observation XML file 

<?xml version='1.0'?><observation><dut> 
 <library>CHRONOS_top_sim</library> 
 <cell>CML_demobuf</cell> 
 <view>schematic</view></dut> 
 <instance> DUT </instance> 
 <vwrapper>$Header:        
            /scn/projects/chronos/rev1/design_VSVAULT/CHRONOS_top_sim/
            CML_demobuf_vwrp/veriloga/veriloga.va,vs 1.6 2007/07/20  
            11:58:35 jbdavid Exp $ </vwrapper> 
 <point count="0" > 
  <environ> 
   <temperature name="Tsub" units="C">  50.0 </temperature> 
   <reference name="Vgnd_a" units="V" atport="gnd_a" > 
                          0 </reference> 
   <supply name="Vdd_a" units="V" atport="vdd_a" > 1.5 </supply> 
   <bias name="Ibref500u" units="A" atport="iref500u" >  
                              500 u </bias> 
  </environ> 
  <process> 
   <section type="cmos" name="mos"> 
    <tox units="Ang"><p> 28.5 </p><n> 28.1 </n></tox> 
    <Cj units="pf/um^2"><p> 0.00136925 </p><n>  
                                      0.001376 </n></Cj> 
    <dVth units="V"><p> 0 </p><n> 0 </n></dVth> 
   </section> 
   <section type="passive" name="scv_vars"> 
    <captol> 1 </captol><indtol> 1 </indtol><restol> 1 </restol> 
   </section> 
  </process> 
  <control> 
   <signal name="pwrdn" type="binlogic" size="1" > 0 </signal> 
  </control> 
  <measures> 
   <Iq name="Iq_vdd_a" analysis="static tran" units="A" > 
                            0.14608 m </Iq> 
   <Vdc name="Vbref500u" analysis="static" units="V" >  
                           47.1934 </Vdc> 
   <gain name="out_in" analysis="tran" fromport="in" toport="out" 
                             units="none" samples="26" diff="true" > 
                             <r> 1.35985 </r><f> 1.35993 </f></gain> 
   <delay name="out_in" analysis="tran" fromport="in" toport="out" 
                            units="s" samples="26" diff="true" > 
                            <r> 21.5284 p </r><f> 21.5278 p </f></delay> 
   <amplitude name="out_in_in" analysis="tran" atport="in" 
                            units="V" samples="26" diff="true" > 
                              <diff><r> 0.294222 </r><f> -0.294222 </f></diff> 

                              <comn><r> 1.34987 </r><f> 1.34987 </f></comn>  
                            </amplitude> 
   <amplitude name="out_in_out" analysis="tran" atport="out" 
                             units="V" samples="26" diff="true" > 
                              <diff><r> 0.400097 </r><f> -0.400122 </f></diff> 
                              <comn><r> 1.18602 </r><f> 1.18597 </f></comn> 
                           </amplitude> 
  </measures> 
 </point > 
</observation> 

2.4  Known Limitations 
The measurement capability of Verilog-A is quite limited 

for small signal analyses. As a result, the current 

methodology focuses on the static (operating point) and 

transient analyses.  This is adequate for a demonstration, 

but will need to be addressed if the methodology is to 

become widely adopted.  

3. OSL – OBSERVATION SPECIFICATION 

LANGUAGE
Modeling the language on PSL, and the rest of Verilog, 

we start with the assumption that all OSL statements will 

(for now) be comments in a Verilog model that includes 

as a minimum, the module and port declarations. Since 

our prototype currently only builds a Verilog-A wrapper, 

we also require discipline declarations for each port. As 

shown in the example in Listing 2, OSL comments are 

recognized by the “// msdv” keyword at the beginning of 

a comment line.  the OSL statement continues with the 

lable, followed by a colon (“:”), then the command 

observe or measure. This is followed by the command 

type identifier, which may have a dot separated subtype.  

Next we have the parameter list (identified with the 

leading #) in set by name (explicit) format, followed with 

the connections for the measurement. The statement is 

ended with a semicolon. The statement may continue over 

multiple lines, where each continuation line starts with 

the standard “//” comment identifier.  To allow multi-line 

statements, no other comments are allowed within an 

OSL statement.  

The label is used in forming the name attribute in the 

observation statement. The connection information varies 

according to the type of measurement or observation 

point. Most measures have either an “atport” or 

“fromport, toport” set of connections which identify the 

ports at which the measurement is occurring. Some 

Measures have a “when” connection which is used to 

limit the measure to specific analysis types. Many 

measures have a “while” connection which contain an 

expression of control signals which determines valid 

control conditions for the measure.  

Getting the process information available to the model 

required adding special subcircuits to the models files 
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with voltage sources set to the process parameter values 

we wish to monitor. In this case, the subcircuit name is 

the final parameter. Where the pin names of the subcircuit 

are not predetermined, the “what” connection specifies 

the parameters which will be monitored. 

Listing 2 Example Vamsunit with OSL statements 

// VerilogA for CHRONOS_top_sim, CML_demobuf, vaunit 
// msdv dut  CHRONOS_top_sim.CML_demobuf:schematic ; 
`include "constants.vams" 
`include "disciplines.vams" 
module CML_demobuf(out_n, out_p, gnd_a, vdd33, vdd_a, in_n, in_p, iref500u, 
pwrdn); 
output out_n, out_p; 
inout gnd_a, vdd33, vdd_a,  
input in_n, in_p, iref500u, pwrdn; 
electrical out_n, out_p; 
electrical gnd_a, vdd33, vdd_a,  
electrical in_n, in_p, iref500u, pwrdn; 
// msdv Tsub:     observe environ.temperature; 
// msdv Vgnd_a:   observe environ.reference #(.units("V")) (gnd_a); 
// msdv Vdd_a:    observe environ.supply #(.units("V")) (vdd_a); 
// msdv Iq_vdd_a: measure dcamps #(.units("A"),.scalar("m"))  
//          when(analysis("static","tran")) (vdd_a); 
// msdv Vdd33:   observe environ.supply #(.units("V")) (vdd33); 
// msdv Iq_vdd33: measure dcamps #(.units("A"),.scalar("m"))  
//          when(analysis("static","tran")) (vdd33); 
// msdv Ibref500u:   observe environ.bias #(.units("A"),.scalar("u")) 
//                 (iref500u); 
// msdv Vbref500u:  measure dcvolts #(.units("V")) when(analysis("static")) 
//          (iref500u,gnd_a); 
// msdv mos:      observe process.cmos #(.tox_units("Ang"),.cj_units("pf/um^2"), 
//          .dvth_units("V")) mos_pmonitor; 
// msdv mos_33:   observe process.cmos #(.tox_units("Ang"),  
//         .cj_units("pf/um^2"), .dvth_units("V")) mos_33_pmonitor; 
// msdv dis_rpoly: observe process.cres #(.order({"p","n"}),.rsh_units("ohms/sq"), 
//    .what({[disr_rppolywo,disr_rnpolywo],[disr_rppolys,disr_rnpolys]}))
//      dis_rpoly_pmonitor; 
// msdv scv_vars: observe process.passive #(.count(3), 
//      .what({captol,indtol,restol})) passives_monitor; 
// msdv pwrdn:    observe control.binsig #(.vth(0.75)) (pwrdn);  
// msdv out_in: measure sigpath.gain_delay #(.samples(25),.diff('TRUE), 
//        .inv('FALSE),. firstsample (10), .units("none"), .timeaccy(5p)  , 
//        .dly_units("s"),.ampl_units("V"),.dscalar("p"),.stdy_dly(50p), 
//        .start_time(100p)) while(!pwrdn) from(in_p,in_n) to(out_p,out_n); 
endmodule

When specified in this way, the OSL statements serve as 

a concise definition of the information we need from each 

observation for the module being monitored without 

regard to the test-bench, level of hierarchy, the 

simulations, or even the type of actual circuit definition 

(behavioral, schematic, or extracted layout) used inside 

the wrapper for that simulation.  From this we can build 

the wrapper itself. 

4. AUTOMATING THE WRAPPER BUILD 
While writing one or two wrappers to generate the desired 

XML would not be too troublesome to do by hand, the 

real value in this process comes when one has many 

elements used in many blocks of a larger design. By the 

time one is finishing the second such module, most of the 

process consists of copying a block of code, and 

substituting in the appropriate variables, which is a 

process not too difficult to automate.  

4.1 Module design 

Figure 1 Outline of Auto-Generated Verilog-A Wrapper. 

For our first prototype, we are doing only Verilog-A 

wrappers, so all of the behavior sits in the analog block. 

The structure of the wrapper is shown in Figure 1. Prior to 

the analog block we need the subcircuit instance for the 

DUT, and the instances for the process monitors.  Where 

we want to measure terminal currents, we define an 

internal net, with a zero volt source. In the analog block 

we start with the behavioral zero-volt sources, and any 

variable expressions we want evaluated at all timesteps. 

Next we open the output file on the initial step, and dump 

the header info, and the observation data for the first 

observation point. Next we have events to capture 

transient measures, and an event to detect control changes 

that imply a new observation point. We wrap up with an 
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event at the final_step which writes any remaining 

measures, and then closes the output file.  

4.2 Generating XML output 
At the present time all xml data is created by the use of 

formatted print statements, assembled into the correct 

order by the wrapper generation program. Example 

statements for the Gain, Delay and Amplitude measures 

(all resulting from the sigpath.gain_delay measure 

statement labeled “out_in” in Listing 2) are shown in 

Listing 3.  Checking the XML syntax validity was simply 

a matter of running a simulation, then loading the output 

files into a web browser. If the file doesn’t’ follow valid 

xml syntax rules, the browser error can guide debugging. 

Listing 3 Formatted fstrobe statments for XML output 

        $fstrobe(VFILE, "\t\t\t<gain name=\"out_in\" analysis=\"tran\" fromport=\"in\" 
toport=\"out\" units=\"none\" samples=\"%d\" diff=\"true\" ><r> %g </r><f> %g 
</f></gain>",
          Niout_in_m+1, Gain_out_in_m_r_sum/Nsout_in_m,  
          Gain_out_in_m_f_sum/Nsout_in_m   ); 
        $fstrobe(VFILE, "\t\t\t<delay name=\"out_in\" analysis=\"tran\" 
fromport=\"in\" toport=\"out\" units=\"s\" samples=\"%d\" diff=\"true\" ><r> %g p 
</r><f> %g p </f></delay>",
          Niout_in_m+1,  Dly_out_in_m_r_sum/Nsout_in_m * 1T,  
          Dly_out_in_m_f_sum/Nsout_in_m * 1T    ); 
        $fstrobe(VFILE, "\t\t\t<amplitude name=\"out_in_in\" analysis=\"tran\" 
atport=\"in\" units=\"V\" samples=\"%d\" diff=\"true\" ><diff><r> %g </r><f> %g 
</f></diff><comn><r> %g </r><f> %g </f></comn></amplitude>",
          Niout_in_m+1, 
          Vdm_from_out_in_m_r_sum/Nsout_in_m,   
          Vdm_from_out_in_m_f_sum/Nsout_in_m, 
          Vcm_from_out_in_m_r_sum/Nsout_in_m,  
          Vcm_from_out_in_m_f_sum/Nsout_in_m     ); 

4.3 Program design 
Since a workable wrapper could be built by hand by 

copying sample code in the right order and substituting 

variables, we used this as the model for our program. All 

of the “template” code is defined in one file, which is 

parsed into a lookup hash as the first step of running the 

program. Once this is complete, each vamsunit file is 

parsed, for each OSL statement in the file, a substitution 

table is created, the appropriate templates are pulled from 

the hash, substitutions made and added to their section of 

the output file. When the “endmodule” statement is 

encountered, all of the sections are written to the output 

file in their proper order. Listing 4 shows the definition 

entries for the “observe environ.bias” statement.  

Listing 4 Wrapper definition file entry for bias observation 

// begin observe.bias vardeclare 
  real %%VAR%%; 
// end observe.bias vardeclare 
// begin observe.bias nodedeclare 
  electrical %%SIG_INT%%; 
// end observe.bias nodedeclare 

// begin observe.bias analogmain 
    V(%%SIG%%,%%SIG_INT%%) <+ 0; 
    %%VAR%% = I(%%SIG%%,%%SIG_INT%%); 
// end observe.bias analogmain 
// begin observe.bias tagbody 
$fstrobe(VFILE, "\t\t\t<bias name=\"%%LABEL%%\" units=\"%%UNITS%%\" 
    atport=\"%%SIG%%\" >  %g %%SCALAR%% </bias>",  
    %%VAR%%*%%SCALEFCTR%% ); // print the current on DC runs 
// end observe.bias tagbody 

5.  CASE-STUDY 
MSDV verification score for CHRONOS_top_sim . CML_demobuf : schematic
category about # unique points list of unique points

instance 1 DUT  
environment 9 1.6 3.5 500 u 5 1.5 3.3 500 u 0 1.6 3.5 500 

supply.Vdd_a units:V 3 1.6 1.4 1.5
supply.Vdd33 units:V 3 3.3 3.1 3.5
bias.Ibref500u units:A 1 500 u  
temperature.Tsub units:C 3 50 100 0
reference.Vgnd_a units:V 1 0

process 4 1.1 27.83 319.51 28.5 319.55  1 27.83 319.55
section.scv_vars.restol type:p 3 0.9 1.1 1
section.mos.tox.p type:c 3 29.17 27.83 28.5
section.dis_rpoly.disr_rpolyw type:c 1 319.55
section.mos_33.tox.n type:c 3 71.5 65.5 77.5
section.scv_vars.captol type:p 2 1.1 1
section.dis_rpoly.disr_rpolys_type:c 1 260.09
section.dis_rpoly.disr_rpolys_type:c 1 319.55
section.mos_33.dVth.n type:c 3 -0.08 0.08 0
section.mos.Cj.p type:c 3 0.0014377 0.0013008 0.00136925
section.mos.tox.n type:c 3 27.43 28.1 28.77
section.mos.Cj.n type:c 3 0.0014448 0.0013072 0.001376
section.dis_rpoly.disr_rpolyw type:c 1 260.09
section.mos_33.Cj.n type:c 3 0.0008645 0.0009555 0.00091
section.mos.dVth.n type:c 3 0.025 -0.025 0
section.mos_33.tox.p type:c 3 71.5 65.5 77.5
section.mos_33.dVth.p type:c 3 0.12 -0.08 0.02
section.mos_33.Cj.p type:c 3 0.0013304 0.0012037 0.001267
section.scv_vars.indtol type:p 2 1.1 1
section.mos.dVth.p type:c 3 0.026 0 -0.026

control 2 1 0
signal.pwrdn type:b 2 1 0

observations 24 1.6 3.5 500 u 5 1.5 3.3 500 u 1 1.6 3.5 500

Figure 2 Verification Score Spreadsheet for example circuit 

To simplify the examples and results for the purpose of 

this paper, we use as our example a simple CML buffer of 

the type described in [7] which has two positive supplies, 

a bias current, and a power-down control. The primary 

measures of concern are the delay, gain, and input output 

amplitudes when not powered-down. Of course we 

always want to know the supply current, and bias current 

input voltage as well. The OSL statements for this model 

were shown in Listing 2, and the abbreviated output for a 

transient simulation was shown in Listing 1. 

After writing an OCEAN script to run a set of corner 

simulations on this block, a perl script is used to generate 
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a results summary spread sheet and a verification 

scorecard. The Verification Score summary is shown in 

Figure 2, where it can be quickly seen that for the 24 

unique points in the observation volume, only 1 bias 

current, only 1 poly-resistor section, only 2 values of 

captol, and indtol have been used and only 4 unique 

process points have been used. We can also see that the 

pwrdn control bit has seen both of its possible conditions. 

As a guide for the verification effort, the verification team 

can keep in mind the following questions: 

Is the Unit level, Schematic Enclosure complete 

for Environment, process and controls? 

Are the Unit Level Behavioral results consistent 

with the Schematic design across Environment 

and controls? 

Are the Unit level Extracted  results consistent 

with the Schematic design for the typical process 

and dominant control setting ? 

For the top level functional (ie with behavioral 

models) simulations is the control Coverage 

high? 

Are there Schematic or Extracted results for at 

top-level simulation? Does that include the 

dominant operation modes? 

Are the results for Schematic in higher-level 

tests consistent with the unit level tests?  

6. CONCLUSIONS
A methodology for generating and using verification 

observations for blocks in a design by creating 

instrumentation wrappers that report observation data in 

XML format has been demonstrated. This method is now 

easily extended to multiple blocks for a larger chip 

design, allowing for capture of the entire design’s “state 

of verification” Using this technique, design teams can 

easily get a handle on what simulations have been run, 

guiding their efforts towards improving their design 

verification into the most fruitful areas.  

6.1 Future Work 
There are already several areas where improvements can 

be planned. First, we need to add information about 

expected range to the “vamsunit”[see page 2] so that an 

expected total volume for the design element can be 

easily calculated, and possibly so that out of range 

measures can be reported during the simulation runs. 

Second, we need to be able to generate Verilog-AMS[2]

wrappers for cases where the design uses AMS models in 

behavioral simulations. Third, we need to improve the 

reporting and summarization process, to generate more 

concise, and more useful results. The author expects to 

publish a separate paper outlining more details about the 

current status of the reporting methodology around the 

time this paper is actually published[8].    
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