
Automatic Mixed-Signal Design Verification
Instrumentation with Observation Specification Language

Jonathan David
Scintera Networks, Inc.

1154 Sonora Ct.
Sunnyvale, CA 94086

j.david@ieee.org

Senior Member IEEE

ABSTRACT
A rigorous approach for quantifying the completeness of

design verification for mixed-signal circuits is proposed.

A metric, Enclosure, is proposed. A methodology for its

measurement is described, using Verilog-A wrappers and

commercial simulators to capture observation data in an

XML format. A prototype Observation Specification

Language is used as a simple description to specify the

contents of verification wrappers or instrumentation

modules, allowing the necessary automation. A tool to

build the instrumentation modules from this description is

developed in perl. Using a CML-Buffer circuit as an

example, the resulting data is presented in a format useful

for guiding the verification effort.

1. INTRODUCTION
A high fraction of design bugs identified in Mixed-Signal

integrated circuits are attributed to the Analog or Mixed-

Signal sections or to the interfaces to these sections[9,10].

While the digital design verification approach uses the

concept of “coverage” for determining how much of the

verification has been done, the analog approach has been

primarily “running corners” on a couple of the top level

simulations, and carefully crafting checklists to record all

the simulations that need to be run[6]. The fact that these

simulations take the longest to run doesn't help matters

much.

Many solutions to these issues have been tried, each

improving the situation a little bit. Simulator vendors tend

to focus on improving simulator throughput, while design

managers may focus more on making better checklists,

and trying to manage all the results. Digital design teams

are extending the Coverage metric to include the mixed

signal interface[4,11,12], and mixed-signal behavioral

models can be utilized to speed up functional

simulation[7,10,13], and report problems[13] but none of

these have proposed a verification methodology that

really deals with the analog circuits and all their

complexities.

As we look towards Analog verification, the number of

parameters involved quickly leads to the conclusion that

this is a problem of much larger dimensions than is

typical for digital. While a logic gate will typically have

min, typical and max timing based on all the process,

voltage and temperature conditions, in analog, we will

typically have to evaluate design performance for

multiple supply voltages, one or more bias currents, best

and worst case corners for several types of transistors,

resistors, capacitors and inductors, and analog and digital

control signals. Since this is a problem of larger

dimensions, well adopt a terminology of volume, rather

than area. We propose to call our metric of analog/mixed-

signal verification, “enclosure”[8] in contrast to the digital

verification metric of “coverage”[3].

In addition to the factors that affect the actual circuit

performance, we include in our dimensions both the

context in which the unit is simulated (Unit level, block

level, or top level) and the design representation used.

(behavioral, schematic, or with extracted parasitics).

These will factor into the interpretation of the verification

score [see page 6].

Traditionally analog simulators write their results based

on the design hierarchy of the testbench. not by the circuit

being tested, requiring development of a unique set of

save, measure or other postprocessing commands, for

each testbench. For this methodology, we'll create a

“wrapper” module that can be instantiated around the

design, in every testbench run, that will capture all the

data we will use in our enclosure analysis, into files of

our own format.

In selecting a format for the captured data, we need to

consider both the capabilities of Verilog-A/AMS[1,2] to

write the data, and the program that will analyze the data

and generate our enclosure report. Rather than create our

own data format, we'll use XML[5] as our data language

for its clear structure, easily parsed by software programs,

978-1-4244-1567-0/07/$25.00 © 2007 IEEE 28

and its internally documented readability, for trouble-

shooting when things go wrong.

2. METHODOLOGY
Instrumenting our design with verification wrappers, the

output data will record “points” of observation in the

multi-dimensioned design space. From these point we

determine a volume of enclosure, and compare this to the

total volume of that design space.

2.1 Design Enclosure
The enclosure metric[8] is defined as the ratio of the

volume enclosed by the shape connecting our observation

points, to the total volume defined by the shape

connecting the points at the extremes of the allowed

range of the observation variables. It should be noted that

running a “best”, “worst” and “typical” set of simulations,

will generate only 3 points, which can at best define a

plane the in 3-dimensional space of “Process, Voltage and

Temperature.” Since the purpose of this metric is to help

us improve the quality of our verification, we'll define a

“fallback” metric, based on the difference between the

dimension of the total volume, and the volume enclosed.

For the case where 3 of 5 dimensions are enclosed (for

an enclosure in the 3 dimensions of 50%) we'll note that

the enclosure is 50%-2 In the other extreme, where

randomness is introduced into the simulations, we may

have to measure a density of observation, rather than just

simple enclosure.

Rather than simply accepting this a problem in 10 or 20

dimensions, it helps to classify the dimensions in a

reasonable scheme, if for no other reason that is will

simplify our wrapper development. The variables in the

first category are those that account for manufacturing

variations, or “process” variables. Both supply voltage

and temperature are “environment” variables, but to this

category, for most circuits, we add bias currents. A third

Category will include digital control bits, as well as

analog control signals. While we will generally expect the

“control”s to be static, when the change is large enough,

we should record a new observation point. Output values,

or characteristics of the circuit itself, or its signal path, we

will classify as “measures.” For the purpose of our

prototype design verification environment, we will not

factor “measures” into the observation volume.

2.2 Design Instrumentation For Enclosure

Measurement
Following the example of PSL's early development [3],

we will use a Verilog-A/AMS[21] language wrapper

module to capture all of the data. By separating the

function of data capture from the actual design, we allow

for several representations of the design module to be

used in the simulation, with minimal impact to the

wrapper and the data format. In our methodology, we use

a separate “vamsunit” as the source for our wrapper, but

with all the statements hidden as comments from the

simulator, we could put the specification in a behavioral

model just as well.

 By using Verilog, we eliminate dependence on a

particular simulator. While all the development of this

methodology has been done with the SPECTRE®

simulator, we expect to be able to use these wrappers in

AMS Designer, (and other Verilog simulators) with

changes only where signals are represented as logic, or

wreal.

The actual wrapper creates internal pins (and zero volt

sources) for interfaces where current measures are

needed, otherwise connecting the DUT directly to the

external interfaces. In our prototype we need information

about the process point being simulated. In order to keep

this information in one file, we have added process

monitor subcircuits to the model files, and instaniate them

in our wrapper. The remaining behavior in the wrapper

model is just that needed to capture the data we want in

our observation point. It is expected that simulators,

which already have access to this information internally,

would eventually provide a native capability for a similar

capability, once this methodology proves its value.

2.3 Observation Data Format
Four considerations drove the format selection. First, we

needed a way to associate each measurement with the

conditions under which it was measured, while encoding

those conditions (supply voltages, temperature, process

info, and control conditions) with every single

measurement would insert an extreme amount of

redundant data in the format. Second, we require a data

format that is relatively free-form, as the conditions and

measurements from different blocks, will vary

significantly. Third, we wanted a format that could be

produced from any relevant tool, not just these wrappers,

so that this methodology could be easily extended to

include the output of those tools. Finally, we want a

format that can be viewed/ and interpreted directly, to

simplify the development process. XML[5], a self-

describing, tree structured data format, fits all of these

needs, and can even be viewed directly as text, or in most

web-browsers.

The observations are grouped into “points” , consisting of

a set of conditions info, and the measurements associated

with those conditions. For each unit recorded we want the

SAME condition items recorded each time. For ease of

use, we classify condition items into 3 categories;

environment, process, and controls. In the XML tree

structure, an observation includes 1 or more points, each

of which have conditions (environment, process, controls)

and measurements. Within each of these categories, there

are specific types of information allowed/or expected.

29

The environment category allows; temperature, supply,

reference (1 only) and bias elements. The process

category allows the “section” element. The control

category allows realsig, realdiffsig and the binsig

elements. Elements in the measurement category include

Iq, Vds, gain, amplitude and delay as shown in Listing 1.

Listing 1 Sample Observation XML file

<?xml version='1.0'?><observation><dut>
 <library>CHRONOS_top_sim</library>
 <cell>CML_demobuf</cell>
 <view>schematic</view></dut>
 <instance> DUT </instance>
 <vwrapper>$Header:
 /scn/projects/chronos/rev1/design_VSVAULT/CHRONOS_top_sim/
 CML_demobuf_vwrp/veriloga/veriloga.va,vs 1.6 2007/07/20
 11:58:35 jbdavid Exp $ </vwrapper>
 <point count="0" >
 <environ>
 <temperature name="Tsub" units="C"> 50.0 </temperature>
 <reference name="Vgnd_a" units="V" atport="gnd_a" >
 0 </reference>
 <supply name="Vdd_a" units="V" atport="vdd_a" > 1.5 </supply>
 <bias name="Ibref500u" units="A" atport="iref500u" >
 500 u </bias>
 </environ>
 <process>
 <section type="cmos" name="mos">
 <tox units="Ang"><p> 28.5 </p><n> 28.1 </n></tox>
 <Cj units="pf/um^2"><p> 0.00136925 </p><n>
 0.001376 </n></Cj>
 <dVth units="V"><p> 0 </p><n> 0 </n></dVth>
 </section>
 <section type="passive" name="scv_vars">
 <captol> 1 </captol><indtol> 1 </indtol><restol> 1 </restol>
 </section>
 </process>
 <control>
 <signal name="pwrdn" type="binlogic" size="1" > 0 </signal>
 </control>
 <measures>
 <Iq name="Iq_vdd_a" analysis="static tran" units="A" >
 0.14608 m </Iq>
 <Vdc name="Vbref500u" analysis="static" units="V" >
 47.1934 </Vdc>
 <gain name="out_in" analysis="tran" fromport="in" toport="out"
 units="none" samples="26" diff="true" >
 <r> 1.35985 </r><f> 1.35993 </f></gain>
 <delay name="out_in" analysis="tran" fromport="in" toport="out"
 units="s" samples="26" diff="true" >
 <r> 21.5284 p </r><f> 21.5278 p </f></delay>
 <amplitude name="out_in_in" analysis="tran" atport="in"
 units="V" samples="26" diff="true" >
 <diff><r> 0.294222 </r><f> -0.294222 </f></diff>

 <comn><r> 1.34987 </r><f> 1.34987 </f></comn>
 </amplitude>
 <amplitude name="out_in_out" analysis="tran" atport="out"
 units="V" samples="26" diff="true" >
 <diff><r> 0.400097 </r><f> -0.400122 </f></diff>
 <comn><r> 1.18602 </r><f> 1.18597 </f></comn>
 </amplitude>
 </measures>
 </point >
</observation>

2.4 Known Limitations
The measurement capability of Verilog-A is quite limited

for small signal analyses. As a result, the current

methodology focuses on the static (operating point) and

transient analyses. This is adequate for a demonstration,

but will need to be addressed if the methodology is to

become widely adopted.

3. OSL – OBSERVATION SPECIFICATION

LANGUAGE
Modeling the language on PSL, and the rest of Verilog,

we start with the assumption that all OSL statements will

(for now) be comments in a Verilog model that includes

as a minimum, the module and port declarations. Since

our prototype currently only builds a Verilog-A wrapper,

we also require discipline declarations for each port. As

shown in the example in Listing 2, OSL comments are

recognized by the “// msdv” keyword at the beginning of

a comment line. the OSL statement continues with the

lable, followed by a colon (“:”), then the command

observe or measure. This is followed by the command

type identifier, which may have a dot separated subtype.

Next we have the parameter list (identified with the

leading #) in set by name (explicit) format, followed with

the connections for the measurement. The statement is

ended with a semicolon. The statement may continue over

multiple lines, where each continuation line starts with

the standard “//” comment identifier. To allow multi-line

statements, no other comments are allowed within an

OSL statement.

The label is used in forming the name attribute in the

observation statement. The connection information varies

according to the type of measurement or observation

point. Most measures have either an “atport” or

“fromport, toport” set of connections which identify the

ports at which the measurement is occurring. Some

Measures have a “when” connection which is used to

limit the measure to specific analysis types. Many

measures have a “while” connection which contain an

expression of control signals which determines valid

control conditions for the measure.

Getting the process information available to the model

required adding special subcircuits to the models files

30

with voltage sources set to the process parameter values

we wish to monitor. In this case, the subcircuit name is

the final parameter. Where the pin names of the subcircuit

are not predetermined, the “what” connection specifies

the parameters which will be monitored.

Listing 2 Example Vamsunit with OSL statements

// VerilogA for CHRONOS_top_sim, CML_demobuf, vaunit
// msdv dut CHRONOS_top_sim.CML_demobuf:schematic ;
`include "constants.vams"
`include "disciplines.vams"
module CML_demobuf(out_n, out_p, gnd_a, vdd33, vdd_a, in_n, in_p, iref500u,
pwrdn);
output out_n, out_p;
inout gnd_a, vdd33, vdd_a,
input in_n, in_p, iref500u, pwrdn;
electrical out_n, out_p;
electrical gnd_a, vdd33, vdd_a,
electrical in_n, in_p, iref500u, pwrdn;
// msdv Tsub: observe environ.temperature;
// msdv Vgnd_a: observe environ.reference #(.units("V")) (gnd_a);
// msdv Vdd_a: observe environ.supply #(.units("V")) (vdd_a);
// msdv Iq_vdd_a: measure dcamps #(.units("A"),.scalar("m"))
// when(analysis("static","tran")) (vdd_a);
// msdv Vdd33: observe environ.supply #(.units("V")) (vdd33);
// msdv Iq_vdd33: measure dcamps #(.units("A"),.scalar("m"))
// when(analysis("static","tran")) (vdd33);
// msdv Ibref500u: observe environ.bias #(.units("A"),.scalar("u"))
// (iref500u);
// msdv Vbref500u: measure dcvolts #(.units("V")) when(analysis("static"))
// (iref500u,gnd_a);
// msdv mos: observe process.cmos #(.tox_units("Ang"),.cj_units("pf/um^2"),
// .dvth_units("V")) mos_pmonitor;
// msdv mos_33: observe process.cmos #(.tox_units("Ang"),
// .cj_units("pf/um^2"), .dvth_units("V")) mos_33_pmonitor;
// msdv dis_rpoly: observe process.cres #(.order({"p","n"}),.rsh_units("ohms/sq"),
// .what({[disr_rppolywo,disr_rnpolywo],[disr_rppolys,disr_rnpolys]}))
// dis_rpoly_pmonitor;
// msdv scv_vars: observe process.passive #(.count(3),
// .what({captol,indtol,restol})) passives_monitor;
// msdv pwrdn: observe control.binsig #(.vth(0.75)) (pwrdn);
// msdv out_in: measure sigpath.gain_delay #(.samples(25),.diff('TRUE),
// .inv('FALSE),. firstsample (10), .units("none"), .timeaccy(5p) ,
// .dly_units("s"),.ampl_units("V"),.dscalar("p"),.stdy_dly(50p),
// .start_time(100p)) while(!pwrdn) from(in_p,in_n) to(out_p,out_n);
endmodule

When specified in this way, the OSL statements serve as

a concise definition of the information we need from each

observation for the module being monitored without

regard to the test-bench, level of hierarchy, the

simulations, or even the type of actual circuit definition

(behavioral, schematic, or extracted layout) used inside

the wrapper for that simulation. From this we can build

the wrapper itself.

4. AUTOMATING THE WRAPPER BUILD
While writing one or two wrappers to generate the desired

XML would not be too troublesome to do by hand, the

real value in this process comes when one has many

elements used in many blocks of a larger design. By the

time one is finishing the second such module, most of the

process consists of copying a block of code, and

substituting in the appropriate variables, which is a

process not too difficult to automate.

4.1 Module design

Figure 1 Outline of Auto-Generated Verilog-A Wrapper.

For our first prototype, we are doing only Verilog-A

wrappers, so all of the behavior sits in the analog block.

The structure of the wrapper is shown in Figure 1. Prior to

the analog block we need the subcircuit instance for the

DUT, and the instances for the process monitors. Where

we want to measure terminal currents, we define an

internal net, with a zero volt source. In the analog block

we start with the behavioral zero-volt sources, and any

variable expressions we want evaluated at all timesteps.

Next we open the output file on the initial step, and dump

the header info, and the observation data for the first

observation point. Next we have events to capture

transient measures, and an event to detect control changes

that imply a new observation point. We wrap up with an

31

event at the final_step which writes any remaining

measures, and then closes the output file.

4.2 Generating XML output
At the present time all xml data is created by the use of

formatted print statements, assembled into the correct

order by the wrapper generation program. Example

statements for the Gain, Delay and Amplitude measures

(all resulting from the sigpath.gain_delay measure

statement labeled “out_in” in Listing 2) are shown in

Listing 3. Checking the XML syntax validity was simply

a matter of running a simulation, then loading the output

files into a web browser. If the file doesn’t’ follow valid

xml syntax rules, the browser error can guide debugging.

Listing 3 Formatted fstrobe statments for XML output

 $fstrobe(VFILE, "\t\t\t<gain name=\"out_in\" analysis=\"tran\" fromport=\"in\"
toport=\"out\" units=\"none\" samples=\"%d\" diff=\"true\" ><r> %g </r><f> %g
</f></gain>",
 Niout_in_m+1, Gain_out_in_m_r_sum/Nsout_in_m,
 Gain_out_in_m_f_sum/Nsout_in_m);
 $fstrobe(VFILE, "\t\t\t<delay name=\"out_in\" analysis=\"tran\"
fromport=\"in\" toport=\"out\" units=\"s\" samples=\"%d\" diff=\"true\" ><r> %g p
</r><f> %g p </f></delay>",
 Niout_in_m+1, Dly_out_in_m_r_sum/Nsout_in_m * 1T,
 Dly_out_in_m_f_sum/Nsout_in_m * 1T);
 $fstrobe(VFILE, "\t\t\t<amplitude name=\"out_in_in\" analysis=\"tran\"
atport=\"in\" units=\"V\" samples=\"%d\" diff=\"true\" ><diff><r> %g </r><f> %g
</f></diff><comn><r> %g </r><f> %g </f></comn></amplitude>",
 Niout_in_m+1,
 Vdm_from_out_in_m_r_sum/Nsout_in_m,
 Vdm_from_out_in_m_f_sum/Nsout_in_m,
 Vcm_from_out_in_m_r_sum/Nsout_in_m,
 Vcm_from_out_in_m_f_sum/Nsout_in_m);

4.3 Program design
Since a workable wrapper could be built by hand by

copying sample code in the right order and substituting

variables, we used this as the model for our program. All

of the “template” code is defined in one file, which is

parsed into a lookup hash as the first step of running the

program. Once this is complete, each vamsunit file is

parsed, for each OSL statement in the file, a substitution

table is created, the appropriate templates are pulled from

the hash, substitutions made and added to their section of

the output file. When the “endmodule” statement is

encountered, all of the sections are written to the output

file in their proper order. Listing 4 shows the definition

entries for the “observe environ.bias” statement.

Listing 4 Wrapper definition file entry for bias observation

// begin observe.bias vardeclare
 real %%VAR%%;
// end observe.bias vardeclare
// begin observe.bias nodedeclare
 electrical %%SIG_INT%%;
// end observe.bias nodedeclare

// begin observe.bias analogmain
 V(%%SIG%%,%%SIG_INT%%) <+ 0;
 %%VAR%% = I(%%SIG%%,%%SIG_INT%%);
// end observe.bias analogmain
// begin observe.bias tagbody
$fstrobe(VFILE, "\t\t\t<bias name=\"%%LABEL%%\" units=\"%%UNITS%%\"
 atport=\"%%SIG%%\" > %g %%SCALAR%% </bias>",
 %%VAR%%*%%SCALEFCTR%%); // print the current on DC runs
// end observe.bias tagbody

5. CASE-STUDY
MSDV verification score for CHRONOS_top_sim . CML_demobuf : schematic
category about # unique points list of unique points

instance 1 DUT
environment 9 1.6 3.5 500 u 5 1.5 3.3 500 u 0 1.6 3.5 500

supply.Vdd_a units:V 3 1.6 1.4 1.5
supply.Vdd33 units:V 3 3.3 3.1 3.5
bias.Ibref500u units:A 1 500 u
temperature.Tsub units:C 3 50 100 0
reference.Vgnd_a units:V 1 0

process 4 1.1 27.83 319.51 28.5 319.55 1 27.83 319.55
section.scv_vars.restol type:p 3 0.9 1.1 1
section.mos.tox.p type:c 3 29.17 27.83 28.5
section.dis_rpoly.disr_rpolyw type:c 1 319.55
section.mos_33.tox.n type:c 3 71.5 65.5 77.5
section.scv_vars.captol type:p 2 1.1 1
section.dis_rpoly.disr_rpolys_type:c 1 260.09
section.dis_rpoly.disr_rpolys_type:c 1 319.55
section.mos_33.dVth.n type:c 3 -0.08 0.08 0
section.mos.Cj.p type:c 3 0.0014377 0.0013008 0.00136925
section.mos.tox.n type:c 3 27.43 28.1 28.77
section.mos.Cj.n type:c 3 0.0014448 0.0013072 0.001376
section.dis_rpoly.disr_rpolyw type:c 1 260.09
section.mos_33.Cj.n type:c 3 0.0008645 0.0009555 0.00091
section.mos.dVth.n type:c 3 0.025 -0.025 0
section.mos_33.tox.p type:c 3 71.5 65.5 77.5
section.mos_33.dVth.p type:c 3 0.12 -0.08 0.02
section.mos_33.Cj.p type:c 3 0.0013304 0.0012037 0.001267
section.scv_vars.indtol type:p 2 1.1 1
section.mos.dVth.p type:c 3 0.026 0 -0.026

control 2 1 0
signal.pwrdn type:b 2 1 0

observations 24 1.6 3.5 500 u 5 1.5 3.3 500 u 1 1.6 3.5 500

Figure 2 Verification Score Spreadsheet for example circuit

To simplify the examples and results for the purpose of

this paper, we use as our example a simple CML buffer of

the type described in [7] which has two positive supplies,

a bias current, and a power-down control. The primary

measures of concern are the delay, gain, and input output

amplitudes when not powered-down. Of course we

always want to know the supply current, and bias current

input voltage as well. The OSL statements for this model

were shown in Listing 2, and the abbreviated output for a

transient simulation was shown in Listing 1.

After writing an OCEAN script to run a set of corner

simulations on this block, a perl script is used to generate

32

a results summary spread sheet and a verification

scorecard. The Verification Score summary is shown in

Figure 2, where it can be quickly seen that for the 24

unique points in the observation volume, only 1 bias

current, only 1 poly-resistor section, only 2 values of

captol, and indtol have been used and only 4 unique

process points have been used. We can also see that the

pwrdn control bit has seen both of its possible conditions.

As a guide for the verification effort, the verification team

can keep in mind the following questions:

Is the Unit level, Schematic Enclosure complete

for Environment, process and controls?

Are the Unit Level Behavioral results consistent

with the Schematic design across Environment

and controls?

Are the Unit level Extracted results consistent

with the Schematic design for the typical process

and dominant control setting ?

For the top level functional (ie with behavioral

models) simulations is the control Coverage

high?

Are there Schematic or Extracted results for at

top-level simulation? Does that include the

dominant operation modes?

Are the results for Schematic in higher-level

tests consistent with the unit level tests?

6. CONCLUSIONS
A methodology for generating and using verification

observations for blocks in a design by creating

instrumentation wrappers that report observation data in

XML format has been demonstrated. This method is now

easily extended to multiple blocks for a larger chip

design, allowing for capture of the entire design’s “state

of verification” Using this technique, design teams can

easily get a handle on what simulations have been run,

guiding their efforts towards improving their design

verification into the most fruitful areas.

6.1 Future Work
There are already several areas where improvements can

be planned. First, we need to add information about

expected range to the “vamsunit”[see page 2] so that an

expected total volume for the design element can be

easily calculated, and possibly so that out of range

measures can be reported during the simulation runs.

Second, we need to be able to generate Verilog-AMS[2]

wrappers for cases where the design uses AMS models in

behavioral simulations. Third, we need to improve the

reporting and summarization process, to generate more

concise, and more useful results. The author expects to

publish a separate paper outlining more details about the

current status of the reporting methodology around the

time this paper is actually published[8].

7. ACKNOWLEDGMENTS
I would like to thank Jay Singh (of Plato Networks) for many

fruitful discussions as this methodology was developed, and the

design team at Scintera Networks. Without our chip designs to

work on, there would have been no necessity to serve as mother

to these inventions.

8. REFERENCES
[1] IEEE Standard Verilog® Hardware Description

Language, IEEE Std. 1364-2001 rev C, New York, 2001

[2] Verilog-AMS Language Reference ManualVersion 2.2,

November 2004 Napa: Accelera, 2004.

[3] Assertion-Based Verification for Simulation Using PSL;

Lecture Manual, Version 5.3, October 2004 San Jose:

Cadence, 2004.

[4] G. Bonfini, M. Chiavacci, R. Mariani, R. Saletti, “A New

Verification Approach for Mixed-Signal Systems”,

BMAS2005 Web-only Publications: http://www.bmas-

conf.org/2005/web-only-pubs/BMAS2005_21.pdf .

[5] E.T. Ray, Learning XML (Second Ed) Sebastopol:

O'Reilly, 2003.

[6] J. David, “Efficient functional verification for mixed

signal IP”, BMAS 2004. Proceedings of the 2004 IEEE

International Behavioral Modeling and Simulation

Conference, Oct. 2004, Pages: 53- 58.

[7] J. David, “Verification of CML circuits used in PLL

contexts with Verilog-AMS”, Proceedings of the 2006

IEEE International Behavioral Modeling and Simulation

Workshop, Sept. 2006, Pages: 97-102.

[8] J. David, M. Singh, "A Methodology to Measure the

Verification Gap in Analog and Mixed-Signal Designs"

submitted for publication: CDNLive, September, 2007

http://www.cdnusers.org.

[9] D. Leenaerts, G. Gielen, R.A. Rutenbar, “CAD solutions

and outstanding challenges for mixed-signal and RF IC

design”, ICCAD 2001. IEEE/ACM International

Conference on Computer Aided Design, Pages:270-277.

[10] K. Kundert, H. Chang, D. Jefferies, G. Lamant, E.

Malavasi, F. Sendig, “Design of mixed-signal systems-

on-a-chip” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems,, Vol.19, Iss.12, Dec

2000, Pages:1561-1571.

[11] T.E. Bonnerud, B. Hernes, T.Ytterdal, “A mixed-signal,

functional level simulation framework based on SystemC

for system-on-a-chip applications”, IEEE Conference on

Custom Integrated Circuits, 2001,Pages:541-544.

[12] S. Gupta, B.H. Krogh, R.A. Rutenbar, “Towards formal

verification of analog designs”, Computer Aided Design,

2004. ICCAD-2004. IEEE/ACM International Conference

on, 7-11 Nov. 2004, Pages: 210- 217

[13] R.O. Peuzzi, “Verification of Digitally Calibrated Analog

Systems with Verilog-AMS Behavioral Models”,

Proceedings of the 2006 IEEE International Behavioral

Modeling and Simulation Workshop, Sept. 2006, Pages:

7-16.

33

