Certify- A Characterization and Validation Tool for Behavioral Models

Weifeng Li, Omair Abbasi, Naveed Hingora, Yongfeng Feng and Alan Mantooth
Mixed-Signal Computer Aided Design Lab (MSCAD)
Department of Electrical Engineering
University of Arkansas
Outline

- Introduction
- What is Certify
- Certify Details
- Examples on a Power Diode Model
 - DC transfer Analysis
 - Transient Analysis
- Conclusion
Introduction

- Writing a model which can accurately depict the characteristics of a real device is a challenging task.
- Writing a model solves just half of the problem. The other half is testing, characterizing and validating the model.
Why do we need Certify

- **Modeling needs**
 - Tools to facilitate model creation process
 - Tools to facilitate model characterization and validation process once the model is being developed
Why do we need Certify

- Model Characterization is a Time-Consuming process
 - Guess a value of the model parameters
 - Simulate the model
 - Compare the results with the target data
 - Change the value of model parameters if there is no match
 - Simulate and compare again

- Validating a model takes additional time
 - Multiple tests must be executed to test a model
 - Each test has to be run individually
Certify

- Certify is the tool to automate the process
- Uses ModLyng’s API to extract model data (parameters, default values, etc)
- Supports models written in MAST, and will expand to Verilog-A, Verilog-AMS and VHDL-AMS
- Is integrated with Saber simulator and partially integrated with VTB simulator
Model Characterization Methodology

- **Model Parameters**
- **Netlist**
- **Formulated Model Device Equations**

Setup Experiments and Simulate

- **Simulated Results**

Match?

- **NO**
 - **Model with New Parameter Values**

- **YES**
 - **Physical Experiment Setup**
 - **Physical Experiment Results**
Interaction with ModLyng and Saber
Architecture of Certify
Certify Details

- Certify is written in Python Language
- Certify GUI is developed using PyQt toolkit
- Certify Database uses XML format to represent all the information
Optimizer

- Get simulation commands from Elaborator
- Get model parameters and default values from ModLyng
- Interacts with Saber simulator through AIM language.
Certify GUI

- Test Bench Editor
- Experiment Editor
- Analysis Information
- Parameter Spreadsheet
- Optimizer
Certify GUI

- Test Bench Editor
- Experiment Editor
- Analysis Information
- Parameter Spreadsheet
- Optimizer
Certify GUI

- Test Bench Editor
- Experiment Editor
- Analysis Information
- Parameter Spreadsheet
- Optimizer
Certify GUI

- Test Bench Editor
- Experiment Editor
- Analysis Information
- Parameter Spreadsheet
- Optimizer
Certify GUI

- Test Bench Editor
- Experiment Editor
- Analysis Information
- Parameter Spreadsheet
- Optimizer
<table>
<thead>
<tr>
<th>Parameter Names</th>
<th>Current Values minimum</th>
<th>minimum</th>
<th>maximum</th>
<th>iteration</th>
<th>Best Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>area(dp.dp1)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>temp(dp.dp1)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>ier(dp.dp1)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>isl(dp.dp1)</td>
<td>5a</td>
<td></td>
<td></td>
<td></td>
<td>5a</td>
</tr>
<tr>
<td>ishd(dp.dp1)</td>
<td>undef</td>
<td></td>
<td></td>
<td></td>
<td>undef</td>
</tr>
<tr>
<td>ise(dp.dp1)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>rse(dp.dp1)</td>
<td>.33</td>
<td></td>
<td></td>
<td></td>
<td>.33</td>
</tr>
<tr>
<td>bv(dp.dp1)</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>cpo(dp.dp1)</td>
<td>35p</td>
<td></td>
<td></td>
<td></td>
<td>35p</td>
</tr>
<tr>
<td>trcm(dp.dp1)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>xil(dp.dp1)</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td>-10</td>
</tr>
<tr>
<td>xiln(dp.dp1)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>alphai(dp.dp1)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>trans1(dp.dp1)</td>
<td>-3.5923</td>
<td></td>
<td></td>
<td></td>
<td>-3.592377e-3</td>
</tr>
<tr>
<td>trans2(dp.dp1)</td>
<td>-1.2367</td>
<td></td>
<td></td>
<td></td>
<td>-1.2367e-5</td>
</tr>
<tr>
<td>egldp.dp1</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>mun(dp.dp1)</td>
<td>947</td>
<td></td>
<td></td>
<td></td>
<td>947</td>
</tr>
<tr>
<td>mun(dp.dp1)</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>gammald(dp.dp)</td>
<td>2.92661</td>
<td></td>
<td></td>
<td></td>
<td>2.92661</td>
</tr>
</tbody>
</table>

Axis Range:

Load Default

Simulate | Optimize | Ok | Cancel
Examples: Power Diode Characterization

- Example 1: DC Transfer
Examples: Power Diode Characterization
Examples: Power Diode Characterization
Examples: Power Diode Characterization
Examples: Power Diode Characterization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Memory</th>
<th>Fixed Value</th>
<th>Specified</th>
<th>Min Value</th>
<th>Max. Value</th>
<th>Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>area(dp.dp1)</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temp(dp.dp1)</td>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isr(dp.dp1)</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isl(dp.dp1)</td>
<td></td>
<td>5a</td>
<td>5a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ish(dp.dp1)</td>
<td></td>
<td>undef</td>
<td>undef</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ise(dp.dp1)</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs(dp.dp1)</td>
<td></td>
<td>.33</td>
<td>.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bv(dp.dp1)</td>
<td></td>
<td>600</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cjo(dp.dp1)</td>
<td></td>
<td>35p</td>
<td>35p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tnom(dp.dp1)</td>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xti(dp.dp1)</td>
<td></td>
<td>-10</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xtih(dp.dp1)</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alpha(dp.dp1)</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trs1(dp.dp1)</td>
<td></td>
<td>-3.592377e-3</td>
<td>-3.592377e-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trs2(do.do1)</td>
<td></td>
<td>-1.2367e-5</td>
<td>-1.2367e-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples: Power Diode Characterization
Examples: Power Diode Characterization

- Extracted Parameters:
 - temp=75
 - isl=500a
 - area=1
 - isr=0
 - ish=undef
 - rs=0.33
 - bv=600
 - cjo=35p
 - tnom=25
 - xti=-10
 - xtih=0
 - alpha=0
 - trs1=-3.592377e-3
 - tsr2=-1.2367e-5
 - eg=1.6
 - mun=947
 - mup=180
 - gamma=2.92661
Examples: Power Diode Characterization

Example 2: Transient Analysis

```
(isr=0,lsl=5a,lsh=undef,lse=0,rs=.33,bv=600,cm=35p,vj=1.5,thn=25,eg=1.6,mm=947,mp=182)
```
Examples: Power Diode Characterization
Examples: Power Diode Characterization
Examples: Power Diode Characterization

![Model Parameters GUI](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Memory</th>
<th>Fixed Value</th>
<th>Specified</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 temp(dp.dp1)</td>
<td>125</td>
<td></td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 isr(dp.dp1)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 isl(dp.dp1)</td>
<td>1e-36</td>
<td></td>
<td>1e-36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 ish(dp.dp1)</td>
<td>undef</td>
<td></td>
<td>undef</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 ise(dp.dp1)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 rs(dp.dp1)</td>
<td>.33</td>
<td></td>
<td>.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 bv(dp.dp1)</td>
<td>600</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 cjo(dp.dp1)</td>
<td>35p</td>
<td></td>
<td>35p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 vj(dp.dp1)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 tnom(dp.dp1)</td>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 eg(dp.dp1)</td>
<td>1.6</td>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 mun(dp.dp1)</td>
<td>947</td>
<td></td>
<td>947</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 mup(dp.dp1)</td>
<td>182</td>
<td></td>
<td>182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples: Power Diode Characterization
Examples: Power Diode Characterization

- **Extracted Parameters:**
 - temp = 125
 - isl = 1e-36
 - isr = 0
 - ish = undef
 - ise = 0
 - rs = 0.38
 - bv = 600
 - cjo = 35p
 - tnom = 25
 - eg = 1.6
 - mun = 947
 - mup = 182
Conclusion and Future Work

- Certify can create and store standard validation and characterization recipes which is reusable.
- The characterization process is automated and a lot of time can be saved.
- Certify uses ModLyng to extract model parameters and default values, and uses Saber simulator to simulate the model.
- Possible interaction with Matlab to implement optimization algorithm.
- Possible integration with other simulators such as Cadence Spectre.
Questions