
Abstract 
Hierarchical statistical analysis using the regression-based 

approach is often used to improve the extremely expensive 

HSPICE Monte Carlo (MC) analysis. However, accurately 

fitting the regression equations requires many simulation 

samples. In this paper, an accurate Behavioral Monte Carlo 

Simulation (BMCS) approach to analyze PLL designs under 

process variation is developed by building a bottom-up 

behavioral modeling approach with an efficient extraction 

process. Using the accurate model, we also develop a modified 

sensitivity analysis for process variation effects to provide 

accurate enough results with less regression cost. As shown in 

the experimental results, we reduce the simulation time of 

HSPICE MC analysis from several weeks to several hours and 

still retain similar statistical results as in HSPICE MC 

simulation. 

1. INTRODUCTION 

Traditional HSPICE Monte Carlo (MC) analysis is often 

used to analyze the statistical results under process variation 

by performing many expensive transistor-level simulations. 

Hierarchical statistical analysis [1]-[6] is a popular approach 

to solve the speed issue of HSPICE MC analysis. Because 

system-level performance of analog circuits is hard to be 

directly modeled as a function of device variations, the 

regression process is often divided into two level modeling. 

The device-level variation models can be obtained from IC 

foundries and used to form the regression equations for the 

variation models of some intermediate-level circuit properties, 

such as timing, current, and frequency information. Other 

equations are then regressed to model the system-level circuit 

performance under process variation. The lock voltage and 

lock time of a Phase Lock Loop (PLL), for example, can be 

modeled as some equations according to the variation of 

intermediate-level circuit properties. 

A popular approach to build those regression equations is 

the response surface methodology (RSM) technique [1, 4-6]. 

Although some techniques [5] can reduce the regression 

complexity, the number of training samples is still about 4 

times greater than the number of unknown coefficients, which 

still requires too many transistor-level simulations. The other 

issue of regression-based approaches is the poor observability 

of the analysis results. Since the circuit performance is 

modeled as a function of the parameter variation, only some 

statistical numbers can be calculated in the analysis. The 

detailed information of circuit responses, such as the locking 

waveform of a PLL under process variation, cannot be 

provided for designers to improve their circuits if necessary. 

Therefore, in some approaches [1]-[4], intermediate-level 

parameters are used to build a corresponding behavioral model 

of the circuit. Using suitable behavioral models, Behavioral 

Monte Carlo Simulation (BMCS) can be performed to 

generate the corresponding output waveforms and estimate the 

performance shift under process variation. Because behavioral 

simulation is often very fast, the MC analysis results can be 

obtained in a short time with detailed circuit behavior. 

However, the accuracy of behavioral models is the most 

critical issue in BMCS-based approaches. If the behavioral 

model is not accurate enough, accurate MC analysis results are 

hard to be obtained even if high-order regression equations are 

used to reflect the process variation effects. 

In this paper, an efficient BMCS approach to analyze PLL 

designs under process variation is developed by this modeling 

approach. We first use an efficient bottom-up approach to 

generate accurate behavioral models for IP-based designs. The 

key concept is using a special “characterization mode” to 

acquire required circuit parameters. Only one input pattern in 

this extraction mode is sufficient to obtain all actual circuit 

properties with parasitic and loading effects. Using our 

modeling approach, simple relationships to reflect the process 

variation effects are accurate enough without high-order 

regression equations as shown in the experimental results. 

Therefore, we adopt sensitivity analysis (SE) to find out the 

relationship between our behavioral parameter variation and 

the device variation with less regression efforts.  

However, traditional sensitivity method may induce too 

many errors on the analog blocks, such as modeling the 

variations of charge pump (CP) and voltage-controlled 

oscillator (VCO). Therefore, we also develop the modified SE

strategies for these two blocks without extra simulation cost. 

For each considered device variation parameter, using two-run 

extractions in our efficient characterization mode is enough to 

find out the relative modified sensitivity values for all 

behavioral parameters in our model. Then these parameters 

can be adjusted when every device variation values are 

randomly generated in the MC analysis. Using the adjusted 

behavioral model, we can perform a fast behavioral simulation 

and obtain accurate responses under process variation, as 

illustrated in Figure 1. 
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Figure 1. Our hierarchical statistical analysis and BMCS flow 

The remainder of this paper is organized as follows. The 

methods to apply sensitivity analysis in our developed 

efficient behavioral modeling approach are introduced in 

Section 2. Modeling strategies using our developed modified 

sensitivity analysis for CP and VCO block is explained in 

Section 3. The experimental results are provided in Section 4 

to demonstrate that our approach deals with process variation 

accurately by using a simple behavioral model. Conclusions 

are finally drawn in Section 5. 

2. PROCESS-VARIATION-AWARE MODEL 

In this section, we will introduce the bottom-up extraction 

flow to generate accurate behavioral models for existing PLL 

designs. The key concept is using a special “characterization 

mode” to acquire required circuit parameters. The PLL design 

in the characterization process does not have to operate as in a 

real system. In this way, the required parameters can be 

obtained faster and time-consuming correlation analysis can 

be avoided for building accurate models. We will also explain 

how to extend this extraction flow to build a variation-aware 

behavioral model for a given PLL design. 

According to previous researches [7], we choose four 

transistor parameters, W, L, Vt and Tox, which are 

considered to have more contributions on performance shift, 

as the random variables of the MC analysis in this work. To be 

more realistic, we use the same variation models as in the 

SPICE MC model provided by TSMC during our experiments. 

In the provided MC model, these four parameters are 

independently described by different random generators. 

Therefore, we model our behavioral parameters as a function 

of process parameters and find out their sensitivities 

independently. Taking the delay time (Td) as an example, the 

timing change ( Td) under process variation can be simply 

modeled by the sensitivity analysis, as shown in (1), 
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                      (1)  

where Td0 is the nominal delay without process variation, 

/d iT x  is the delay sensitivity to the process parameter xi.

2.1. Characterization Mode 

In our developed characterization mode, we break the PLL 

loop without separating it into independent blocks as shown in 

Figure 2. The broken connection helps us to send special 

patterns and quickly trigger the PLL into different situations. 

Moreover, simulating every PLL blocks together allows 

automatic parasitic and loading effect consideration. This 

methodology is more suitable for existing IPs, avoiding 

tedious layout-tracing steps. Only one pattern in this mode can 

trigger the design and extract all required characteristic 

parameters from simulation results. Major factors affecting 

PLL performance include the timing information of phase 

frequency detector (PFD) and frequency divider, the current 

information of CP and loop filter (LF) block, and the 

frequency information of VCO. These factors can be obtained 

by using this approach without detailed circuit structure and 

device size information. 

Figure 2. Developed characterization mode of PLL 

Since the behavioral model parameters are directly obtained 

from voltage-domain measurement, it is convenient for us to 

use simple sensitivity analysis to find out the relationship 

between those parameters and process variation. In our 

approach, besides the original extraction process to build the 

behavioral model without process variation, we only need 

another four runs of the extraction process. By comparing 

each parameter value under device variation to the value 

without device variation, four different sets of SE values can 

be obtained for the four different device-level variations. 

Taking the delay change under width variation (Td, W) as an 

example, we can model the relationship using a sensitivity 

value (SE,Td_ W) as shown in (2). Because the developed 

extraction process is very efficient, five runs of such 

extraction process will require much less simulation time than 

fitting the complicated regression equations in traditional 

approaches, as demonstrated in the experimental results. 
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                      (2) 

While performing MC analysis using our behavioral models, 

the changes of behavioral model parameters can be calculated 

according to their sensitivity when every device variation 

values are randomly generated. Since the contribution of each 

device variation is treated as independent in foundry model, 

we use linear function to obtain the final value of each 

behavioral model parameter, as demonstrated by the delay 

time (Td) in (3). Our approach does not assume any specific 

distribution of the device parameters. Therefore, any kind of 

probability distribution can be used in our BMCS approach to 

obtain accurate statistical results. 
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In our approach, possible non-ideal effects at each block are 

considered, not the VCO block only. However, constant 

sensitivity values may not sufficiently model the CP and VCO 

behavior under process variation. Therefore, the modified 

sensitivity analysis method considering the actual circuit 

characteristics is developed to model their variation responses 

with acceptable accuracy, as explained in Section 3. 

2.2. PFD & Frequency Divider 

These two circuits are often treated as digital blocks. 

Timing information, such as delay and transition time, is the 

major concern of PLL designers. Those characteristic 

parameters are also the primary sources of non-ideal effects, 

such as PFD dead zone, and contribute to PLL performance. 

In our approach, timing parameters and their process variation 

sensitivities can be easily measured from the simulation 

results in the characterization mode. Then, flexible 

adjustments like (3) can be easily made without extra efforts 

to build accurate behavioral models.  

3. MODIFIED SE ANALYSIS FOR CP&VCO 

3.1. CP & LF 

In our behavioral model, the transfer function of these two 

blocks are modeled together such that the information of 

current mismatch (Iup-Idn) and charge/discharge current (Iup/ Idn)

of CP can be observed by the extracting pattern in Figure 2. 

The equivalent switch on/off time is also extracted in our work 

due to its effects in locking phase. 
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In order to reflect the process variation effects, a variable 

ratio is defined as the changed current (ICP’) ratio to the 

nominal current (ICP). Using the traditional SE analysis, ratio

can be expressed as a pure linear function like (3). However, 

actual current variation ratio may not have a linear relationship 

with threshold voltage variation. A single MOS saturation 

current (ID) is used as an example to observe the relationship 

between current variation ratio and Vt, as shown in (4). Since 

k is a constant value, the ratio is a 2nd order function of Vt.

Therefore, considering the threshold voltage variation, this 2nd

order form can be used as the modified sensitivity function 

instead of a linear function, which also requires only two 

simulation samples. Figure 3 shows the variation ratio of 

charge current under different Vt. We compare the calculated 

results of traditional SE and our modified SE with HSPICE 

simulation. It shows that the results of our model are more 

similar to HSPICE simulations. 

Figure 3. Current variation ratio under different Vt

As to the other three device-level parameters ( W, L, and 

Tox), linear sensitivity models are still accurate enough for 

modeling the information of current variation ratio. Therefore, 

the ratio under such four device parameter variations can be 

expressed as (5). The 2nd order term indeed makes our model 

more accurate than traditional sensitivity analysis without 

extra regression cost, as shown in the experimental results. 
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3.2. VCO 

  We adopt the linear VCO model to simplify modeling 

complexity because the linear VCO model predicts more than 

90% of real VCO characteristics, especially in the operating 

range, according to a related study [8]. Then, we use actual 

simulation results of a ring oscillator to explain the process 

variation effects. Considering different L for an example, the 

relationship between oscillator input voltage (Vctrl) and output 

frequency (fout) obtained from HSPICE simulation, is shown in 

Figure 4. The unused part is truncated in order to focus on 

VCO responses in the normal operating region (0.8V ~ 1.2V). 

Curves are quite linear in Figure 4 except for the transition 

positions. Therefore, using linear VCO model will not incur 

too many errors. 

Figure 4. fout -Vctrl vs. L
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Traditional sensitivity analysis for such a linear VCO model 

uses a constant value to represent frequency sensitivity to L.

In other words, frequency change should be the same when 

L value is the same. However, the distance between any two 

curves is not a unique value as shown in Figure 4, implying 

that the frequency change under a given fixed channel length 

variation is not a constant. 

Another experiment is conducted to observe this problem 

and to understand the effects of Vctrl values. Three different 

Vctrl values, 0V, 0.8V and 1.2V, are arbitrarily chosen and 

frequency sensitivity SE,f_ L is measured under different Vctrl

values. The experimental results displayed in Figure 5 show 

that the frequency sensitivity (slope) are quite different in 

different Vctrl values. Therefore, our modified frequency 

sensitivity is modeled as a function of both process variation 

and Vctrl value in our approach. Waveforms in Figure 4 can be 

translated into piece-wise linear curves shown in Figure 6 

when we adopt linear VCO modeling approach. Then, we 

model the frequency sensitivity as a function of three variables 

instead, which are Vctrl, SE,fmin_ L and SE,fmax_ L defined in (6). 

As illustrated in Figure 6, we can see that different sensitivity 

for fmin and fmax can give different frequency sensitivity at 

different Vctrl value according to (7) and (8). Then, the other 

sensitivity values (SE,f_ W, SE,f_ Vt, SE,f_ Tox) can be obtained by 

the same way. Our modified SE analysis including the Vctrl

effects still uses simple linear models, which allow us to 

flexibly adjust the frequency sensitivity in a simple way. In the 

following experiments, we will demonstrate that our VCO 

model can still have accurate responses under process 

variation using the modified sensitivity analysis. 

Figure 5. SE,f_ L values vs. Vctrl

Figure 6. Developed linear VCO model with Vctrl effects 
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4. EXPERIMENTAL RESULTS 

We use a charge-pump PLL circuit implemented in TSMC 

0.18µm process to perform some experiments. The PLL 

behavioral model is built up by Verilog-A language and 

simulated in Cadence’s Virtuoso environment (Analog Artist).

Referring to the statistical models of transistor parameters in 

TSMC, we perform 4+1 runs parameter extraction developed 

in Section 2 to find out our modified sensitivity values for 

these 4 process parameters, which are W, L, Vt, and Tox. Then 

we can adjust the behavioral parameters according to the 

modified SE values when every device variation values are 

randomly generated in the MC analysis.  

For comparisons, we perform the traditional sensitivity 

analysis and 1st order RSM to model the behavioral parameters 

under process variation. The required extraction samples of 

traditional SE method is the same as in our approach, but the 

number of training samples of 1st order RSM is at least 4 times 

to keep the fitting accuracy according to the conclusions in [5]. 

Then, the estimated circuit parameters from these three 

approaches are used in a 100-run BMCS analysis using our 

accurate behavioral model to analyze the statistical results 

under process variation. 

We also perform 100-run traditional HSPICE MC analysis 

for this PLL circuit. The same device variation values are used 

in HSPICE and our BMCS approach to compare the analysis 

accuracy in TABLE I. The lock voltage (Vlock) and the lock 

time (Tlock) are selected as the system characteristics of PLL 

circuits for comparisons. In our experiments, Tlock is defined as 

the time when Vctrl is within 3% of Vlock. As to the most 

concern of PLL designers, peak-to-peak jitter (Jitterp-p), the 

worst value under MC analysis is also shown in TABLE I. 

The scatter plots in Figure 7 and Figure 8 also demonstrate 

that our simple models can still retain good accuracy to 

estimate the performance shift under process variation. 

Referring to the previous work [4] using 2nd order RSM for 

their behavioral parameters under process variation, we can 

improve the correlation coefficient value of Tlock from 0.888 [4] 

to 0.991 using our accurate PLL model. The results are also 

much better than the pure RSM-based approach (0.858) in [4]. 

It shows that a behavioral model with accurate responses to 

process variation is very important. If the behavioral model is 

not accurate enough, the statistical results would not be 

accurate even if use the high-order regression equations for 

device variations. 
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In the TABLE I, our accurate behavioral model has similar 

statistical results to HSPICE simulation, but significantly 

reduces the simulation time of Monte Carlo analysis from 

several weeks to several hours. Using our BMCS approach, 

the correlation coefficient (corr. coe.) values of these two 

system performance, Vlock and Tlock, are very close to 1 (>0.99), 

which can demonstrate the identical variation direction with 

HSPICE MC simulations. The standard deviation (St. Dev.), 

which is expressed as the percentage of nominal value, shows 

the statistical dispersion of system performance under such 

device variation. Our modified SE method considering actual 

circuit properties also has more accurate results than tradition 

SE approach with same extraction time. Compared to the 

results of RSM-based models shown in the last column of 

TABLE I, our approach has similar accuracy but reduce the 

regression cost significantly. It shows that such a simple 

model for behavioral parameters under process variation is 

accurate enough to perform BMCS analysis.  

TABLE 1   

COMPARISON RESULTS OF MONTE CARLO ANALYSIS 

HSPICE 

MCS

Modified SE

+BMCS 

Trad. SE

+BMCS

1st RSM

+BMCS

Nominal 0.9935 0.9930 0.9930 0.9920

St. Dev. 3.45% 3.62% 1.56% 3.67% 
Vlock

(V) 
corr. coe. 1 0.999 0.998 0.999 

Nominal 3.342 3.341 3.341 3.361 

St. Dev. 17.25% 17.21% 15.25% 17.03%
Tlock

(µs) 
corr. coe. 1 0.991 0.984 0.990 

Nominal 13.2 13.4 13.4 13.5 Jitterp-p

(ps) Worst 17.0 17.4 15.4 19.6 

Textraction (hours) N/A (4+1)×1.71 = 8.55 34.20 

Tsimulation (hours) 598.54 3.50 2.93 2.95 

5. CONCLUSIONS 

In this paper, a Behavioral Monte Carlo Simulation (BMCS) 

approach to analyze PLL designs under process variation is 

developed by using a bottom-up modeling approach with 

efficient extraction process. We also develop the modified 

strategies for traditional sensitivity analysis to improve the 

accuracy with same extraction cost. Such simple methods can 

reflect the process variation effects with acceptable accuracy 

and save considerable simulation time for complicated curve 

fitting. Then, we can use this accurate behavioral model to 

perform fast MC analysis and provide similar variation trend 

(correlation coefficient > 0.99) and statistical distributions 

(according to standard deviation values) to the results of 

transistor-level simulation. As shown in the experimental 

results, we can reduce the simulation time of HSPICE MC 

analysis from several weeks to several hours and still retain 

high accuracy. 

Figure 7. Scatter plot of Vlock 

Figure 8. Scatter plot of Tlock 
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