Electronic Systems Design Group

BMAS 2007

An Integrated Approach to Energy Harvester Modeling and Performance Optimization

Leran Wang, Tom J. Kazmierski, Bashir M. Al-Hashimi, Steve P. Beeby and Russel N. Torah {lw04r,tjk,bmah,spb,rnt}@ecs.soton.ac.uk

Outline

- Introduction
- Energy harvester (EH) modeling approaches
- Simulation and comparison
- EH performance optimization
- Conclusion

Introduction

- Energy harvesting
 - State of the art

School of Electronics

and Computer Science

Introduction

- Energy harvesting
 - Harvesting energy from the environment

Introduction

•Diagram of an EH

J∮Ð

Introduction

•VHDL-AMS as modeling language

•Genetic optimization completely implemented in VHDL-AMS testbench (L. Wang and T.J. Kazmierski, VHDL-AMS based genetic optimization of a fuzzy logic controller for automotive active suspension systems, BMAS 2005)

EH modeling approaches

•Micro-generator models

• Ideal voltage source

To booster circuit

(a) Ideal voltage source

J∮Ð

Case study

- **State-of-the-art EH** (*R. Torah, et.al, Development of a cantilever beam generator employing vibration energy harvesting. In Proceedings of The 6th Int. Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, 2006.)*
- Vibration-based
- Electromagnetic micro-generator
- Voltage multiplier as booster
- Super capacitor

J∳Ð

Micro-generator

Cantilever based electromagnetic

Micro-generator

Voltage booster •6 stage voltage multiplier (VM)

Simulation and comparison

•Ideal voltage source

- Villard: 11 min 14 sec
- Dickson: 3 min 9 sec

School of Electronics

and Computer Science

Simulation and comparison

•Experimental measurement and HDL model simulation

Simulation and comparison

•Equivalent circuit model and HDL model simulation

$$L=m, \quad C=1/k, \quad R=b$$

Micro-generator

EH performance optimization

School of Electronics and Computer Science

Southampton, UK

Genetic optimization in VHDL-AMS testbench

•GA features:

- 4 genes: *N1*, *R1*, *N2*, *R2*
- Fitness: super capacitor charging rate v'dot
- Tournament selection
- Elitism
- Arithmetic crossover
- Gene mutation

•VHDL-AMS finite state machine

University of

Optimization results

•Parameters of un-optimized VT

	Resistance(Ω)	Number of turns
Primary winding	400	2,000
Secondary winding	1,000	5,000

Parameters of optimized VT

	$\operatorname{Resistance}(\Omega)$	Number of turns
Primary winding	140	1,500
Secondary winding	16,000	6,800

Electronic Systems Design Group

Optimization results

J∮D

Conclusion

- •Integrated approach to EH modeling and optimization
- •Electrical equivalent circuit models of micro-generator cannot predict the voltage booster's performance accurately
- •HDL model based on analytical equations can describe the actual shape and size of an EH
- •Through performance optimization it is possible to increase the energy harvesting rate by 40%

J∮Ð

Acknowledgements

The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC-UK) for funding this work in part under grant number GR/S95770/01.

School of Electronics and Computer Science

University of Southampton, UK

Thank you!