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ABSTRACT 

The widespread use of piezoelectric materials in an
increasing number of applications requires the development 
of advanced realistic electrical models. Until now, models 
were limited taking into account only one ceramic's operation 
mode, i.e., thickness or planar. On the other hand, it 
establishes that the robustness of the piezo-electronic systems 
is likely to weaken if the models making it possible to 
conceive do not improve, in particular by taking into account 
further real phenomena. This article proposes to merge, in a 
new electrical model, the two operation modes. It is 
demonstrated that the electrical behavior of the proposed 
model is in very good agreement with the real ceramic 
behavior.

1. INTRODUCTION 

Nowadays, worldwide competition constraints the 
manufacturers to reduce the production cost in a drastic way. 
So, an important effort must be achieved by the designer to 
decrease the product development cycle time. During the 
design, the engineer's ambition is not only to validate design 
specifications but also to ensure the product's robustness. For 
this, designers make use of simulation tools to improve their 
efficiency. The result is a highly iterative and predictive 
engineering process that delivers innovative designs, higher 
quality products and reduced time-to-market. However, these 
data-processing tools are attractive only if faithful models of 
the components to be implemented are available. For several 
decades, engineers have attempted to create such powerful 
models. It is the same for the industry of piezoelectricity. 
Nevertheless, the modeling of piezoelectric ceramics, which 
are component located between two worlds - mechanical and 
electrical - is not an easy task. 

An important issue when designing ultrasonic based 
systems is the knowledge of the ceramic behavior regarding 
two parts, the front/back mechanical side of the ceramic and 
the electrical part. Indeed, by definition the two fields closely 
interact. The electromechanical interaction, represented by 
electrical equivalent circuits, was first introduced by Mason 
[1]. Redwood [2] enhanced this electromechanical model by 
incorporating a transmission line, making possible to extract 
useful information on the temporal response of the 
piezoelectric component. Thus, it is possible to represent the 

propagation time for a mechanical wave from one side to 
another.  

The piezoelectric crystal deforms in different ways at 
different frequencies. Those various deformations are called 
the vibration modes. Like most solid bodies, the vibration 
modes are a result of a system of standing waves. These 
modes can be expressed from a wave equation, in association 
with a series of overtone modes which are solutions of the 
same set of equations. A number of research works have 
been conducted in the past years dealing with the ceramic's 
behavior. Although these models perfectly match the
electrical characteristics of the piezoelectric transducers, they 
suffer from a strong limitation: they cannot implement 
several vibration modes simultaneously. The objective of this 
paper is to present a unified electrical SPICE model 
permitting to handle together the planar and thickness bulk 
vibration modes of ceramic disks.  

Among electrical simulators, SPICE [3] has a particular 
place. It is commonly used in electrical engineering where it 
became a standard. SPICE models are easy to share between 
various simulators, ensuring an easy diffusion. The SPICE 
software which we use for this study is the commercial 
version PSPICE Allegro AMS Simulator 15.7 from Cadence 
[4]. Our release works in a MS Windows® environment. The 
AMS Simulator's software allows users to create designs, 
control simulations and interpret the results in a single 
environment. 

The paper is organized as follows. Section 2 recalls how 
the thickness and planar vibration models are electrically 
implemented in the literature. The third section introduces 
the new unified model that we propose. Section 4 compares 
simulation results obtained with our model with real ceramic 
measurements. Finally, we conclude in section 5.  

2. THICKNESS AND PLANAR ELECTRICAL 
MODELS 

The values of the piezoelectric properties of a material 
can be derived from the resonance behavior of suitably 
shaped samples subjected to a periodic electric field. This 
study will be limited to the cases of ceramic disks (probably 
the most convenient shape to fabricate) polarized (P) along 
the 3-axis (it is conventional to align the coordinate system 
with the poling directions) which is the axis of applied 
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electric field (E). As a consequence the crystalline symmetry 
of the poled polycrystalline ceramics, which have ∞ - fold 
symmetry in a plane normal to the poling direction belongs 
to 6mm group in the hexagonal symmetry system. Therefore, 
for the analysis, a cylindrical coordinate system with its 
origin located at the center of the disc is most suitable. Due 
to the symmetry, only thickness and radial (planar) modes 
are excited (Fig. 1) and axes r and z are assumed to be pure 
mode propagation directions. For each of them, SPICE 
electrical models were developed in the past [5] [6] [7]. 

E P E P

            a) Planar Mode         b) Thickness Mode 
Fig. 1: Typical vibration modes of ceramic disks 

Moreover, since biased surfaces are the two parallel 
surfaces of the disc, only the component Ez of the exciting 
electric field has to be considered. Taking into account these 
assumptions, a 3-D analytical model of piezoceramic disc has 
been developed in [13].   
The wave equations in the radial and the thickness directions 
are: 
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Where CD
11 and CD

33 are the elastic stiffness constants at 
constant electric displacement (they are not pure elastic 
constants due to the electromechanical coupling), ur and uz

are the elastic displacements and ρ the density of the 
material. 

2.1. Electrical study 

From the equation of acoustic wave's propagation in
piezoelectric materials, it is possible to write linear relations 
linking, on the one hand the mechanical magnitudes (force F 
and speed of particles u) which are preserved at an interface 
and, on the other hand electrical quantities (applied potential 
v3 and intensity i3 of the current). The fact of having an 
input vector of dimension 3 (i.e., two mechanicals and one 
electrical input), leads to an impedance matrix: 
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Where F1 and F2 (N) symbolize the forces, u1 and u2

(m/s) are the particle velocities inside the material, w the 
angular frequency (rad/s) and h33 = e33/ε

S (V/m) the 
piezoelectric constant with e33 (C/m2) the piezoelectric 
coefficient. The mechanical impedance Z (rayl) is calculated 

knowing the ceramic density ρ (kg/m3), the particle velocity 
u (m/s) and the area A (m2) by using Z = ρ.u.A. The 
equivalent circuit of Fig. 2 can be easily derived from the 
previous piezoelectric impedance matrix [9]. 

The diagram of Fig. 2 explains the port definition for a 
thickness-mode transducer along with Redwood's version of 
Masson's equivalent circuit. The model consists of a 
capacitance C0, a negative capacitance –C0, an ideal 
transformer and a transmission line. C0 is the so called 
piezoceramic clamped capacity:  

d

A
.C0

S

ε=

Where εS (C2/Nm2) is the ceramic permittivity with zero 
or constant strain, A (m2) is the area electrodes and d (m) his 
thickness. 
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Fig. 2: Transducer and his equivalent circuit of Mason as 
adapted by Redwood 

The mechanical part of the piezoelectric transducer is 
easily represented into SPICE using a transmission line 
model. This class of component is well known and modeled; 
in addition, it fits perfectly in this context. In first 
approximation, two parameters are sufficient to entirely 
define the mechanical part of the transducer, i.e., the 
impedance Z and the sound propagation delay td through the 
transducer. If more accuracy is required and/or when acoustic 
losses are significant, e.g. transducers with low mechanical 
Q-factor, losses in the piezoelectric material can be added. In 
a previous work [10], Püttmer et al. define a SPICE model of 
the transducer taking into account the losses with a 
transmission line modeled as lumped ladders. 

2.2. Thickness-Mode Transducer model 

Among the thickness-mode transducer's models, we 
chose, because of its simplicity of implementation, the 
Morris's model [5] (Fig. 3). This model is a direct
transcription of the Redwood's model [2]. 

In this model, the ideal transformer of Mason's model is 
replaced by linear dependent sources Exmr and Fxmr.
Compared to Morris [5], the unusual negative capacitance –
C0 is now well interpreted by the SPICE simulator. Vs1 is a 
zero valued source used by dependent source Fxmr as
required by SPICE and have no effect on the circuit
operation. 
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.ends

Fig. 3: Morris's SPICE thickness mode transducer diagram 
and his related SPICE netlist 

The resistance r1 (not include in the schematic) is needed 
to fulfill the SPICE requirement that every node have a DC 
path to ground to perform the mandatory bias computation. 
Furthermore, in first approximation, the r1 resistance can be 
selected to reflect dielectric losses if desired. 

The impedance ZpztT and the travel time tdT of the 
transmission line according to the thickness d are calculated 
from physical parameters with the following relations:  

ZpztT = A.Vpzt.ρ (rayl) with Vpzt = (C33
D/ρ)1/2 (m/s) 

tdT = d/Vpzt (s) 

In Fig. 4, a comparison is made between the electrical 
impedance Z = v3/i3 obtained with the Morris's model by 
simulation and a ceramic measurement performed with an 
Agilent 4294A precision impedance analyzer from [11]. The 
Ferroperm [12] commercial transducer used in this study is a 
circular PZ26 of 16mm diameter by 2mm thick. The 
experimental set-up is composed of this analyzer with his 
impedance test kit and a spring-clip fixture which applies 
very little mechanical loading in such a way that the sample 
is under free piezoelectric resonator condition. 
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Fig 4: Impedance comparison between experiment and 
simulation for Thickness-mode Morris model 

As one can observe in fig. 4, the simulated harmonic 
resonances appear at the desired frequencies, i.e., ~1MHz, 
~3MHz, ~5MHz… However, since model does not take into 
account the two kinds of losses: mechanical and dielectric, 
the peaks appear sharper in the simulation. This can be 
corrected by modeling the losses starting from the model of 
the transmission line as explain by Püttmer et al. in [10]. 

For lower frequencies (<1MHz), the simulated curve 
differ more significantly from the real one. In fact, the peaks 

which emerge in the measured curve embody the planar 
resonance not managed by the Morris's model. 

2.3. Planar-Mode Transducer model 

To consider the planar vibratory effects, the model must 
be adapted. In this case the electric field becomes
perpendicular to the acoustic waves spread. From the 
previous work of Iula et al. [13] the electro-mechanical part 
of the model can be established (Fig. 5).  
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Fig. 5: SPICE planar mode transducer diagram and his 
corresponding SPICE netlist 

The other important change to consider is the 
modification of the transmission line parameters. The 
anisotropic properties of piezoelectric materials imply a 
change in the characteristic impedance as well as in the 
propagation time through the ceramics. It comes: (r
represents the disk radius) 

ZpztP = 2πr.d.VpztP.ρ (rayl) with VpztP = (C11
D/ρ)1/2 (m/s) 

tdP =2r/VpztP (s) 

The electrical impedance Z = v3/i3 computed with the 
Planar's model is compared with a measurement (Fig. 6). The 
transducers employed for this comparison is a circular PZ26 
of 16mm diameter by 1mm thick. 
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Fig 6: Impedance comparison between experiment and 
simulation for Planar-mode model 

This time, the planar mode is well taken into account by 
the model for the first planar resonance frequency. As far as 
the high order planar modes are concerned, the resonance 
frequencies obtained with the model are higher than those 
obtained by measurement. On the other hand, it very clearly 
appears a vanishing of fundamental (and harmonics) 
oscillations of the thickness mode. 
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From the preceding study, it emerges that mismatches 
exist between real measurement and simulation. In fact, the 
models are valid only for a limited part of the frequency 
spectrum (fig. 4 and fig. 6). But what happen if the two 
modes are mixed? It could be the case when ceramics'
thicknesses increase regarding the diameter. For this reason, 
in the next section a new model is presented. This model will 
be able to manage, together, the two modes of operation on 
the entire frequency spectrum of ceramic's use. 

3. THE NEW UNIFIED MODEL 

As we have just seen it, the two modes of vibration are 
independently considered in two distinct models, each one of 
them treating only part of the real component operation. If 
one wants to simulate the real behavior of ceramics, it is 
necessary to integrate in a one and only model both the 
planar mode and the thickness mode. The proposed model 
must be able to take into account both the coupling between 
the planar and thickness modes and the mechanical 
interactions of the disk with the media on major faces and on 
curved surface. To this end, Iula et al. [13] demonstrate that 
the voltage v across a disk ceramic is expressed by the 
equation (1): 
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Equation (2) along with the Kirchoff's current law allows an 
equivalent electrical representation (Fig. 7). This is achieved 
by association of one capacitor C0 and two current-
controlled current sources i1 and i2.  

C0 

i

jwC0v 
v i1= h33C0(u1+u2) 

i2=kh31C0(u3+u4)

Fig. 7: Electrical part of the unified model 

The overall current i which is flowing through the 
ceramic's electrodes is related to the particle velocity as 
described in (2) by u1, u2, u3 and u4. The force applied in each 
ceramic's surface is linked to the current by the equation 
f=h.i/jw (3) where h, the piezoelectric constant, takes the 
value of h33 or h31 depending of which mode is involved. 

In the case of thickness mode, substituting equation (2) in 
(3):  
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Equation (4) is reorganized to reveal the negative capacitor –
C0: 
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Likewise, for the planar mode the force can be expressed by:  
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negative capacitance -C0 respectively. 

According to (5) and (6), the electro-mechanical part of 
the model is achieved. In Fig. 8, the two previously defined 
current-controlled current sources i1 and i2 are still present 
and two new voltage-controlled voltage sources e1 and e2 are 
included, each one driving a vibration mode. 
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Fig. 8: Electro-mechanical part of the unified model 

Finally, two transmission lines are added to symbolize the 
mechanical part of the ceramic (Fig. 9). Each one of it takes 
into account the acoustic wave propagation according to a 
privileged direction, planar or thickness. Consequently, it is 
possible to connect 4 independent acoustic forces to each 
surfaces of the transducer, i.e., F1, F2, F3 and F4.  
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Fig. 9: The unified model 

141



Like previous models, two zero valued sources are added 
Vs1 and Vs2 in the schematic. They are used to compute the 
"current" values (u1+u2) and (u3+u4) and have no effect on 
the circuit operation. 

4. EXPERIMENT VERSUS SIMULATION 

In order to obtain an experimental validation of the 
proposed model, the same impedance measurement than
those performed previously for the thickness and planar 
modes is achieved. Fig. 10 shows the measured and 
simulated amplitude of the input impedance for a 2mm thick 
ceramic disk. A wide frequency spectrum is chosen to 
demonstrate the good agreement between the model and the 
dual intrinsic resonance of the ceramic. 
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Fig. 10: Impedance comparison between experiment and 
simulation for the unified model (2mm thick) 

Again, Fig. 11 shows the same comparison than the 
previous one but for a thinner ceramic disk. Here also a good 
agreement is observed (better for the first planar than for the 
first thickness resonance frequency). The small difference 
found for the first thickness harmonic come from the fact that 
the two electrical Ni/Au contact layers are not represented in 
the model. To this end, the model can be easily enhanced 
with the adjunction of two appropriated transmission lines 
instead of the conducting layers [7]. 
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Fig. 11: Impedance comparison between experiment and 
simulation for the unified model (1mm thick) 

5. CONCLUSION 

In this work, we have developed a comprehensive method 
for the development of a new Spice model of cylinder shaped 
piezoceramic elements, based on the analysis of the
electromechanical behavior of the PZT ceramic.  This model 
is valid for any diameter to thickness ratio. It describes the 

electromechanical coupling between thickness and planar 
modes by coupling electrically and mechanically in explicit 
form the two dimensional vibration. In order to validate this 
unified spice model and to determine the accuracy of results, 
an experimental validation of the model has been carried out. 
Calculated impedance versus frequency is then successfully 
compared with measured values. 
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