

Electronics & Computer Science University of Southampton

Behavioural Simulation and Synthesis of Biological Neuron Systems using VHDL

J.A. Bailey¹, P.R. Wilson¹, A.D. Brown¹ and J.E. Chad² School of Electronics and Computer Science¹ & School of Biological Sciences² University of Southampton, SO17 1BJ, U.K.

- The Nervous System
- VHDL Neuron Model
- VHDL Neuron Network Model
- Synthesis

- Biologists & Engineers
- Investigate Neuron Structures
- Biological experiments
 - Live Tissue
 - Can't Establish Connectivity
- Behavioural Modelling
 - Simulate behaviour
 - Determine network characteristics

Stained Rat Cortical Neurons [1]

Motivation

- → Biologically realistic simulation
- Efficient Models
- Reduce run time
 - Hardware acceleration
 - Real Time Simulation
 - Virtual Animal/Nervous System
- Reusable Libraries
 - Easily configurable

- → The Nervous System
- VHDL Neuron Model
- VHDL Neuron Network Model
- → Synthesis

A Typical Neuron

A Typical Neuron

- The Nervous System
- → VHDL Neuron Model
- VHDL Neuron Network Model
- → Synthesis

History of the VHDL Model

Cell Automata Model

→ Enric Claverol, 2000

Claverol, E.T. Brown, A.D. Chad, J.E., "Message Based Event Driven Model (MBED) A largescale simulation of the piriform cortex by a cell automaton-based network model", IEEE Trans. Biomedical Engineering, Vol. 49(9), pp 921-935, Sept 2002.

- System C Neuron Model
 - → Sankalp Modi, BMAS, 2004
- VHDL Biologically realistic neuron model
 - → Julian Bailey, BMAS 2007

Model Overview

More Model Details

- Neuron Library LibNeuron
 - Contains all Sub Components
- Three top level entities
 - Neuron 1
 - Neuron 2 (Oscillator Activated Neuron)
 - Synapse
- Each Configurable using Generics

So

Sub Component – Threshold Block

Sub Component – Burst Block

Example Parameters:- Threshold 3, AP Time 1 ms, Ref. Time 2 ms, Burst 5.

)	3		0					
)								

Activated periodically by oscillator

Example Parameters:- Period 16 ms, Phase 2ms, AP Time 1 ms, Ref. Time 2 ms, Burst 3.

- Connect Neurons
- Model Delays & Activation Duration
- Can be activated once already active

Example Parameters:- Delay 1ms, Duration 1ms, Weighting 1.

Sou

UNIVERSITY OF

Inside the Synapse

- The Nervous System
- VHDL Neuron Model
- → VHDL Neuron Network Model
- → Synthesis

Model Verification

- → Nematode, C Elegans
 - → 302 Neurons
 - Extensively studied
 - Connections partially known

LibElegans VHDL Library

Simulation Results

- The Nervous System
- VHDL Neuron Model
- VHDL Neuron Network Model
- → Synthesis

Synthesis

- Previous work
 - → C Elegans Design Size (200k FG, 85k DFF's)
- Optimisation
 - 2 Types of Neuron
 - User Definable Length Counters
 - Up Counters only
 - Disable Pins on all blocks
- Design fits on many more devices
 - → 60,506 FG's & 48,891 DFF's
- Hardware acceleration

Stained Hippocampal Neuron [1]

Synthesis Example

→ A section of C Elegans (Mini Elegans)

- → 33 Neurons, 50 Synapses
- Only goes forwards

Hardware Acceleration

- Traditional Simulations
 - ➔ Hours -> Days
 - → Example: Mini Elegans (6 Sec) 3 hours 20 mins
 - → Example: C Elegans (15 Sec) 32 hours 12 mins
- ➔ In Hardware
 - → Real-Time
 - → Example: Mini Elegans (6 Sec) 6 Seconds! (2000x Faster)
 - → Near Future : C Elegans (15 sec) 15 Seconds! (7728x Faster)
- → However...
 - Limited by Current FPGA Technology
 - Large Scale Multi-Processor Hardware Simulation Frameworks
 - → Spinnaker Univ. Southampton, UK & Univ. Manchester, UK

- Synthesizable Neuron Library
- Post-Synthesis Verification
 - Compared against previous work
 - → C Elegans
- Post Synthesis design
 - Reasonably sized
 - Download onto FPGA
 - Hardware acceleration
 - → Virtual Animal/Nervous System on FPGA!!!

Any Questions ?

