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ABSTRACT
Hardware-in-the-Loop (HIL) simulation is a widely
used concept for design, rapid prototyping, test and
optimization of complex systems. The paper at-
tempts to present a formal approach of determin-
ing the fidelity of HIL simulation coupling systems.
This approach can help to design and optimize such
systems.
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1. INTRODUCTION
In a HIL simulation, one part of a real system or
the system environment is replaced by a numerical
model and interfaced to the remaining hardware
via sensors and actuators. The term HIL simula-
tion is often used to describe the interfacing of a
real controller to its environment (the plant). This
is called a plant simulation ([7]). Within a plant
simulation the mathematical model of the control
object, called plant, is running on a general pur-
pose computer. The controller is connected e.g. via
a data acquisition (DAQ) board. A typical exam-
ple of HIL simulation is a connection between a
complete electronic control unit (ECU) and a sim-
ulated car environment (plant model). [8],[3], and
[6] are typical examples for this application. The
controller behavior simulation inverts the situation.
The prototype of a control program runs on a gen-
eral purpose computer which is connected to a real
plant e.g. through a DAQ board. Special simula-

tion computers are sometimes used instead of gen-
eral purpose computers to run the simulation.
HIL simulation can be also used to replace a com-
ponent of a plant simulation by the real part, if it
is too difficult to model. Formal approaches for the
description of HIL systems, especially the coupling
system between real system and simulation, are sel-
dom. Many HIL simulators are designed straight-
forward without deeper analysis of different setups.
This paper presents a formal approach to study cou-
pling systems for HIL simulators.
The paper is organized as follows: The next sec-
tion presents related works to this topic. Section 3
formulates the preliminaries of the approach. Sec-
tion 4 introduces the fidelity definitions for HIL cou-
pling systems, while section 5 deals with the con-
sequences and the appliance of the given formal-
ism. Application examples are presented in section
6. The conclusion can be found in section 7.

2. RELATED WORKS
The attempt to formulate the problem of the theo-
retical accuracy of HIL simulations can be found in
[1] , [2] and [5]. The authors M. MacDiarmid and
M. Bacic wrote in [5] that the “quantification of
the accuracy of HWIL simulators presents unique
challenges, and remains an open research problem”.
The complete system, HIL simulator and real sys-
tem, is included within the contemplation of the
mentioned papers. The authors model the coupled
system as two-port network. Especially digital sys-
tems and control hardware systems are excluded
from the approach.
Our attempt is to formulate the problem for general
HIL systems, including the coupling system of an
ECU-HIL simulation and similar solutions, like the
Chip-Hardware-in-the-Loop Simulation (CHILS) ap-
proach we presented in [4]. We focus on the HIL
simulation coupling system itself, without modelling
the hardware and/or the simulation part.



3. PRELIMINARIES

Figure 1: HIL System

The starting point is given by the complete system
within its original environment (upper part of fig-
ure 1). The system output is the vectorial variable
Xout corresponding to the vectorial variable Xin.
The system input is the vectorial variable Yout cor-
responding to the vectorial variable Yin.

Xin = Xout

Yin = Yout
(1)

In the HIL simulation the system remains the same,
while the environment will be simulated. The cou-
pling system has the same input and output types
as the real system and its environment. The cou-
pling system, as a signal processing system, will
transform the output of the real system and the
output of the simulated environment. The trans-
formation functions are G1(t) and G2(t).

Xin(t) = G1(t) ∗Xout(t)
Yin(t) = G2(t) ∗ Yout(t)

(2)

The transformation can be reformulated as follows.

(
Xin(t)
Yin(t)

)
=

[
G1(t) 0

0 G2(t))

]
∗
(
Xout(t)
Yout(t)

)
(3)

An ideal coupling system will not change the trans-
mitted signal, so the hardware “in-the-loop” feels
no difference to a connection with the real environ-
ment. The term transparency can be used for this
purpose ([1]). A design goal of the coupling sys-
tem would be to design the system as transparent
as possible. That means that the transformation
functions G1(t) and G2(t) are nearly 1 (equation
4).

[
G1(t) 0

0 G2(t)

]
≈
[

1 0
0 1

]
(4)

The question is how to measure the transparency
of the coupling system?

4. TRANSPARENCY AND FIDELITY
DEFINITION

The basis of measuring the transparency of the cou-
pling system is a model of the coupling system. Un-
like the approach in [1] and [2], it is not necessary
to model the real system or its environment. It is
feasible to model only the coupling system.

Assumption 1. The coupling is assumed to be
representable as a lineare time invariant system (LTI
system). This is a general approximation that is
often used because non-linear system are hard to
model. Most of the non-linear systems can be ap-
proximated with linear models within their normal
working range. Real world system are mostly non-
linear.

For the next steps, we will use the transfer func-
tion within the frequency domain. The advantage
is that the transfer function directly shows the re-
lation of input and output signal.

Definition 2. A LTI system can be described by
the convolution of the input signal with the impulse
response y(t) = g(t) ∗ x(t).

Assuming that x(t) is the input signal and y(t) is
the output signal of a single input/single output
system (SISO system). In the frequency domain,
the corresponding Laplace transformed signals are
x(s) = L{x(t)} and y(s) = L{y(t)}.

Definition 3. The transfer function is defined
as

y(s) = h(s)x(s) and so h(s) =
y(s)

x(s)
(5)

y(s) and x(s) are polynomials of degree m (w.l.o.g.
x(s) and y(s) have the same degree).

h(s) =
y(s)

x(s)
=

b0 + b1s
1 + · · ·+ bms

m

a0 + a1s1 + · · ·+ amsm
(6)

Lemma 4. In a complete transparent system, the
input has to be identical with the output, so y(s) =
x(s). The transparency of a signal transformation
system can be now defined by the difference of the
two polynomials y(s) and x(s) of the transfer func-
tion h(s).



For the calculation of the transparency, we will first

define a m+1-dimensional space
m∏

over polynomi-
als

∑m
i=0 aik

i. The power i stands for the space
axis while the coefficients ai are the values in each
dimension i.

Lemma 5. The difference between two polynomi-
als y(s) and x(s) can be defined as the distance of
the polynomials within the m+1-dimensional space
m∏

over polynomials of the grad m.

Definition 6. A weighted distance dw(x(s), y(s))
with x(s) = a0 + · · ·+ ams

m and y(s) = b0 + · · ·+
bms

m is defined as

dw(x(s), y(s)) =

∣∣∣∣∣∣∣
a0

...
am

−
 b0

...
bm


∣∣∣∣∣∣∣
w

(7)

with the weighted norm∣∣. . .∣∣
w

=
√
w0(a0 − b0)2 + · · ·+ wm(am − bm)2

(8)

.

The weights wi ≥ 1 are used to satisfy the influence
of the different polynomial exponents on the whole
polynomial difference.
For the examples in section 6 wi =

∑i
j=0 i + 1 is

chosen.

The transparency is now defined for SISO systems.
Most of the transfer systems are multiple input/multiple
output (MIMO) systems (figure 2).

Figure 2: MIMO system

Definition 7. MIMO systems can be described
by a matrix of SISO transfer functions

H(s) =

 h1,1(s) · · · hn,1(s)
...

. . .
...

h1,n(s) · · · hn,n(s)

 (9)

with

Y (s) =

y0(s)
...

yn(s)

 (10)

and

X(s) =

x0(s)
...

xn(s)

 (11)

so

Y (s) = H(s)X(s) (12)

.

Remark The transfer matrix is square because
the vectors X(s) and Y (s) have the same size.

The main diagonal elements represent the direct
transfer functions between each input xi and each
output yi. The other elements are couplings be-
tween different inputs and outputs (xi and yj with
i 6= j).

Definition 8. The ideal transfer function ma-
trix has a main diagonal containing ones. The other
matrix elements are zero.y1(s)

...
yn(s)

 =


1 0 · · · 0

0
. . . 0

...
... 0

. . . 0
0 · · · 0 1


x1(s)

...
xn(s)

 (13)

This means, that no influences between different
inputs and outputs exist, while the direct connec-
tion between each input and each output does not

change the signal ( y(s)
x(s)

= 1).

Definition 9. A norm ‖h(s)‖p over a polyno-

mial quotient h(s) = y(s)
x(s)

can be defined over the

distance of x(s) and y(s) in
m∏

.∥∥∥∥ y(s)

x(s)

∥∥∥∥
p

= dw(x(s), y(s)) (14)

This norm can be used as a measure for the trans-
parency.
Remark If x(s) and y(s) are identical the dis-
tance is zero, so the system is fully transparent and
the transfer function does not change the input sig-
nal. In all other cases the distance is larger than
zero.



Definition 10. Additional, the difference between
the upper polynomial y(s) and a zero polynomial

can be defined as norm
∥∥∥ y(s)

x(s)

∥∥∥0

p
over the distance of

y(s) and 0 in
m∏

.∥∥∥∥ y(s)

x(s)

∥∥∥∥0

p

= dw(0, y(s)) (15)

Definition 11. A matrix of transparency can be
defined as follows. The main diagonal contains the
elements ‖hi,i(s)‖p with 1 ≤ i ≤ n, while the other

positions are filled with elements ‖hi,j(s)‖0p with 1 ≤
i ≤ n , 1 ≤ j ≤ n , i 6= j.

‖h1,1(s)‖
p

‖hj,i(s)‖0p
. . .

‖hi,j(s)‖0p ‖hn,n(s)‖
p

 (16)

An ideal transparency matrix is completely zero. 0 · · · 0
...

. . .
...

0 · · · 0

 (17)

Definition 12. With a matrix norm we can now
define a transparency function tr for a MIMO sys-
tem transfer matrix. The Euclidean norm is chosen
in the example in section 6.

tr(H(s)) =∥∥∥∥∥∥∥∥

‖h1,1(s)‖

p
‖hj,i(s)‖0p

. . .

‖hi,j(s)‖0p ‖hn,n(s)‖
p


∥∥∥∥∥∥∥∥ (18)

Definition 13. The fidelity function fd of a cou-
pling system can be now defined by the transparency
of the transfer function. The value of the fidelity
ranges between zero and one.

fd(H(s)) =
1

1 + tr(H(s))
(19)

The transformation performed by the coupling sys-
tem (equation 3) is defined as follows.(

Xin(t)
Yin(t)

)
=

[
G1(t) 0

0 G2(t))

]
∗
(
Xout(t)
Yout(t)

) (20)

Definition 14. For better visibility, a symbolic
transformation (?) of the input signals can be now
defined as multiplication with the fidelity matrix.(

Xin(t)
Yin(t)

)
=

[
fd(L{G1(t)}) 0

0 fd(L{G2(t)})

]
?

(
Xout(t)
Yout(t)

)
(21)

This can be interpreted as the proportionate infor-
mation loss of the original input signal caused by
the transformation. The fidelity will be one, if the
signal is not changed, so nothing is “lost”.

An ideal symbolic transformation matrix is now[
1 0
0 1

]
(22)

.

Remark The system is now defined as a continu-
ous version. The same definitions can be made with
a discrete system model (the Laplace transforma-
tion will be replaced by the Z-transformation). In
real coupling systems, a discrete part often exists,
e.g. if the input/output values are exchanged via
digital connection.

5. CONSEQUENCES
The fidelity function fd(H(s)) is an instrument to
compare different HIL coupling solutions. Three
steps are necessary to use the approach.

• First: model the different coupling systems

• Second: calculate fd(H(s)) for each system

• Third: compare the symbolic transformation
matrixes using a matrix norm

It is also possible to find optimal parameters for a
parameterized coupling system by starting an op-
timization process over the transparency function
tr(H(s)) and the symbolic transformation matrix.
The optimization problem can be defined as
minp(Hp(s)). p is a set of parameters of the trans-
fer function Hp(s).

6. EXAMPLE
A heat-sensor-HIL simulation is taken as example
for a continuous coupling system. To build a heat-
sensor-HIL simulation a heating element is needed
to transform the simulated heat into real heat for
the sensor.



Figure 3: Heat-Sensor-in-the-Loop

Definition 15. The heating element can be de-
scribed by the following transfer function.

Hh(s) = K ∗ 1

1 + Ts
(23)

The proportional coefficient K and the time con-
stant T are depending on environmental variables
like the specific heat capacity, density and velocity
of the transfer medium and the heating element.

K =
1

cmγmAv

T =
ch

cmγmAv
with

cm - heat capacity of the medium (air cm = 1.01 Ws
gK

)

ch - heat capacity of the heating element (steal
ch = 0.477 Ws

gK
)

γm - density of the medium (air cm = 1293 g
m3 )

v - velocity of the medium

A - cross section surface of the pipe where sensor
and heating element are located

l - distance between heating element and sensor

Heat sensor and heating element are positioned in
the distance l from each other. This causes the de-

lay D =
l

v
in heat transportation. It is assumed

that the heat control system corrects the propor-
tional coefficient by adding the correction coeffi-

cient C =
1

K
.

The transfer function of the complete coupling sys-
tem is now.

Hh(s) = C ∗K ∗ e−Ds

1 + Ts
(24)

e−Ds can be approximated by the Fourier series

eDs = 1 + sD +
s2D2

2!
+ . . ..

The fidelity function of the system is now calculated
assuming an air velocity of v = 1m/s, a sensor dis-
tance of l = 0.1m and a pipe cross section surface of
A = 0.1m2. The calculation (equation 25) is done
without units. The result is a system fidelity of
fd(Hh(s)) = 0.847 (the best fidelity would be one).

T =
0.477

1.01 ∗ 1293 ∗ 0.1 ∗ 1
(25)

T = 0.00365

D = 0.1/1

e0.1s = 1 + 0.1s+ 0.005s2

Hh(s) = 1
(1+0.1s+0.005s2)∗(1+0.00365s)

Hh(s) = 1
1+0.10365s+0.00537s2+0,00002s3

tr(Hh(s)) =

∥∥∥∥∥∥∥∥

∣∣∣∣∣∣∣∣


1

0.10365

0.00537

0,00002

−


1

0

0

0


∣∣∣∣∣∣∣∣
w


∥∥∥∥∥∥∥∥

fd(Hh(s)) =
1

1 + tr(Hh(s))

fd(Hh(s)) = 0.847

Increasing the air velocity to v = 10m/s leads to
better results of the fidelity function fd(Hh(s)) =
0.982. Figure 4 shows that the heating systems
with increased air velocity follows the control input
even better than the other system.

Figure 4: Heating system - different air ve-
locities

It is obvious that the higher air velocity leads to
a faster heat transport to the heat-sensor-in-the-
loop, but it is not obvious what happens if the
material of the heating system itself is changed.
The steal heating element in the original system
is replaced by a copper heating element and an
aluminum heating element. The heat capacity of
copper is ch = 0.381 Ws

gK
while the heat capacity

of aluminum is ch = 0.896 Ws
gK

. Without a system



model it is hard to decide which one is the better
material. The fidelity function of the system is cal-
culated assuming the original settings with an air
velocity of v = 1m/s and pipe cross section sur-
face of A = 0.1m2. The resulting system fidelity is
fd(Hh(s)) = 0.848 for the copper based system and
fd(Hh(s)) = 0.843 for the aluminum based system.
The copper heating element produces a higher sys-
tem fidelity than the steal heating element and the
aluminum heating element, but the delay in heat
transportation is even more important for the fi-
delity. The three materials are leading to nearly
the same results (figure 5). The fidelity value re-
flects this behavior in a very good way.

Figure 5: Heating system - different materi-
als

7. CONCLUSION
We presented an attempt to calculate the fidelity
of HIL simulation coupling system in a formal way.
The calculation is based on the transfer function in
the frequency domain of the coupling system. SISO
and MIMO systems are covered by this approach.
The approach can be used to compare different HIL
simulation coupling systems. An optimization pro-
cess, regarding the simulated coupling systems, can
be executed to find the best possible system con-
figuration. This process is based on the presented
fidelity value.
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