New Modeling & Evaluation Approach for Capacitive Occupant Detection in Vehicles

Armin Satz KAI Kompetenzzentrum Automobil- und Industrie- Elektronik GmbH Europastrasse 8 9524 Villach, Austria <u>Armin.satz@k-ai.at</u>

Dirk Hammerschmidt Infineon Technologies Austria AG Siemensstrasse 2 9500 Villach, Austria

Never stop thinking

- Introduction
- Sensor Model
 - Human passenger
- Electrode variation method
 - FEM simulation
- Outlook on further activities

- Contactless sensing methods are needed to improve automotive safety standards.
- Information about occupancy status can be used for triggering safety devices → smart air bag system.
- Capacitive sensors can detect: Different passenger postures, child-sized passengers and child seat positions. [1],[2]

(infineon **Introduction - Examples**

Child sized occupant protection methods using capacitive sensors.

SeatSentry[™] occupant sensing system

detects human body mass and enables the passenger-side airbag for adult occupants, and it disables the passenger-side airbag for children (with or without a Child Restraint

References: [4],[5] and [6]

10/9/2008

Introduction - Problem Description

- Questions:
 - How human passengers are influencing sensed capacitances?
 - How can the sensed signal be inverted in order to give the correct occupancy status?
- Answers:
 - Human Body model; Sensor model.
 - Model parameter evaluation method.

- T represents transmitter and R receiver electrodes placed on a vehicle seat.
- Possible current pathways are modeled by the capacitances C_{TB}, C_{TR}, C_{RB} and C_{GB}.

 For 10 kHz sensor signals human body impedance can be neglected compared to the coupling impedances.

- Sensor model has the form of a bridged T-network.
- <u>Idea</u>: Measured signals are related back to model parameters (C_{TB},..). Decision about the occupancy status is based on model parameters. → Case of maximal sensor information.
- <u>Problem</u>: Only three independent parameters are accessible by measurements!

- Further Problems:
 - Parameters are passenger dependent.
 - Parameters cannot be fixed without restrictions.
- Solution:
 - If one cannot fix one parameter at least able to change some model parameters independently from each other.

Result: Set of six equations for six unknown parameters.

Electrode Variation Method

- Variation of the transmitter is changing only C_{TR} and C_{TB}.
- C_{GB} and C_{RB} are not influenced by a transmitter variation.
- FEM simulation

Simulation input data

Electrode Area T1 [cm ²]	2400
Electrode Area T1 [cm ²]	1200
Electrode Area T1 [cm ²]	2400
ε _R Seat	3
Base area of the body [cm ²]	2827
Height of the body [cm]	80
Electrode to body distance [cm]	15

Simulation results

Parameters	Step 1 (T1)	Step 2 (T2)	Step 2 / Step 1
С _{тв} [рF]	11.2	8.1	0.723
C _{RB} [pF]	13.8	13.9	1.007
С _{тк} [рF]	0.3	0.2	0.667
C _{GB} [pF]	62.5	63.5	1.016

- We will focus on MHz frequency range in order to sense human impedances.
- Sensor models need to be developed including permittivity and conductivity of human tissue.

- [1] Kazunori Jinno, Masahiro Ofuji, Takashi Saito and Saikichi Sekido; Occupant Sensing Utilizing Perturbation of Electric Fields; SAE paper collection; Occupant Detection and Sensing for Smarter Air Bag Systems, 167-180, 2004
- [2] Christian Marschner; Messverfahren zur Eliminierung von Erdungseinflüssen bei kapazitiven Detektoren und ihre Anwendung zur Sitzbelegungserkennung in Kraftfahrzeugen; PhD – thesis at munich university of technology, 2004
- [4] <u>http://www.elesys-na.com/content.cfm?page=2</u>, 08.09.2008
- [5] <u>http://www.elesys-na.com/content.cfm?page=37</u>, 08.09.2008
- [6] <u>http://www.elesys-na.com/content.cfm?page=38</u>, 08.09.2008