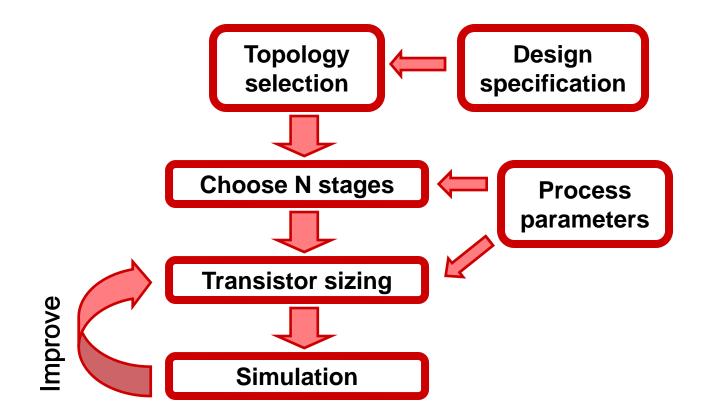
Improved Phase Noise Model for Ultra Wideband VCO


Li Ke Reuben Wilcock Peter Wilson

- Research motivation
- Improved phase noise model
- Simulation results
- Measurement results
- Conclusions

Research motivation

Typical VCO design flow

- Topology and number of stages chosen from experience
- Starting point and simulation led improvement

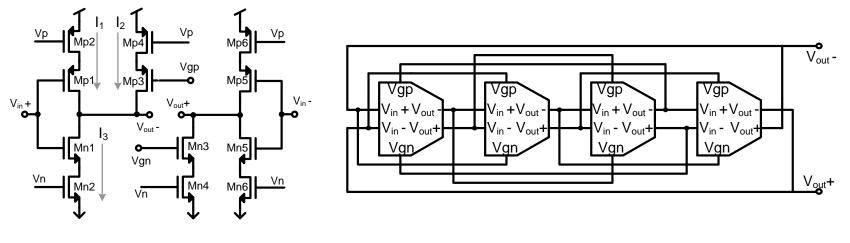
Research motivation

Voltage controlled oscillator design challenges

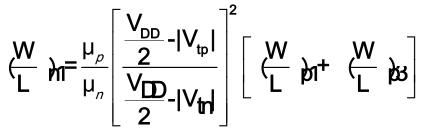
- Lack of detailed transistor sizing guidelines which relate high level specifications to W and Ls.
- Small signal model (Barkhausen Criteria) only holds valid for linear operation.
- Jitter/Phase noise performance is an important specification in VCO design.
- Phase noise and jitter simulations in leading simulators (e.g. SpectreRF) are extremely time consuming.

Requirement for a phase noise targeted transistor sizing model.

Research motivation


- Previous work has considered a number of factors when modelling VCO phase noise
 - Process parameters
 - Power supply
 - Topology
 - Transistor dimensions
 - Oscillation frequency

However:


No one has considered the effect of frequency tuning on phase noise.

- Research motivation
- Improved phase noise model
- Simulation results
- Measurement results
- Conclusions

The proposed model is based on the new dual inverter delay cell which has 10 octave tuning range.[1]

Previous design guidelines for this cell simply ensure that I₁ + I₂ = I₃

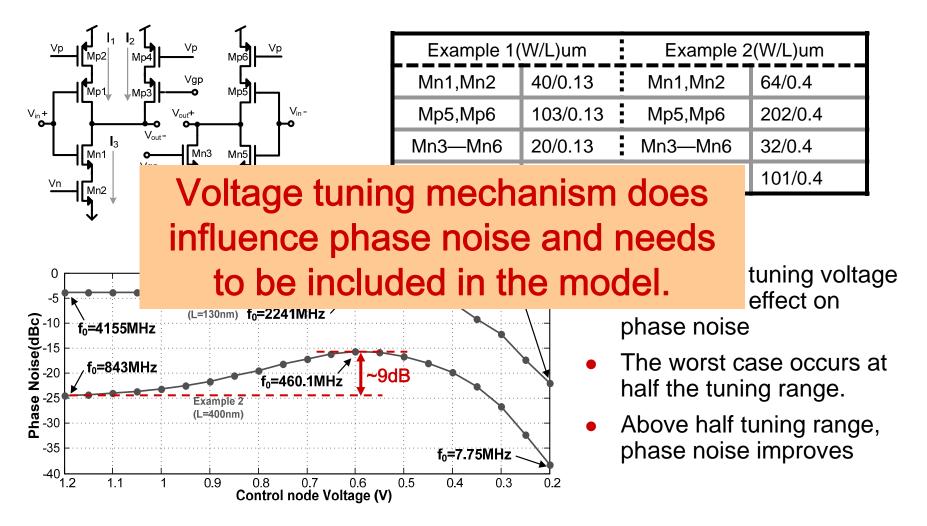
[1] Li Ke, Reuben Wilcock, Peter Wilson "Improved 6.7GHz CMOS VCO Delay Cell With Up To Seven Octave Tuning Range ", *Proceedings of IEEE ISCAS*, May 2008

For a phase noise orientated design approach, existing models can be expressed as[2]:

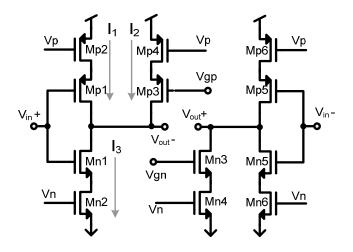
$$L(f) = \frac{1}{2NV_{eff}^2 C_{ox}} \left(\frac{K_{fn}}{W_{n1}L_{n1}} + \frac{K_{fp}}{W_{p5}L_{p5}} \right) \left(\frac{f_0^2}{f^3} \right)$$

Takes account of:

- Oscillation frequency: f₀
- Process parameter: K_{fn},K_{fp}, C_{ox}
- Transistor dimensions: W_{n1}, L_{n1}, W_{p5}, L_{p5}
- Topology: N

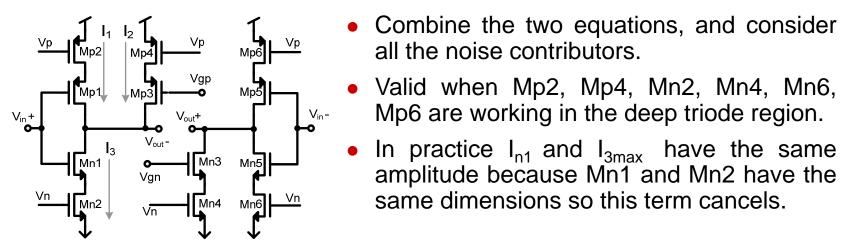

(Generally accepted that 1/f noise dominates the spectrum up to a few MHz)

[2] Sohrab Samadian, Michael M. Green, "Phase Noise in Dual Inverter-Based CMOS Ring Oscillator", *Proceddings of IEEE ISCAS*, May 2006

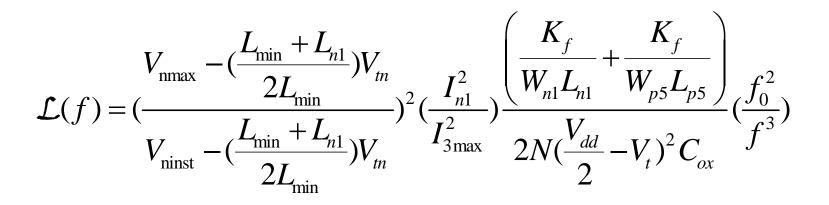

What happens when the tuning voltage changes?

Post layout simulation results (SpectreRF-PSS-Pnoise)

Including the voltage tuning mechanism in the model: part 1

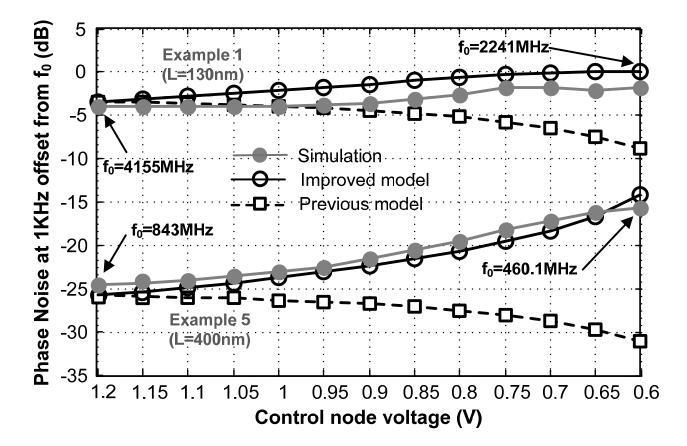


- We introduce the terms instantaneous current I_{inst} and maximum achievable current I_{max} .
- I_{inst} corresponds to the V_{ninst} and I_{max} correspond to V_{nmax} which is the maximum achievable control node voltage (normally equal to V_{dd}).
- Use the I_3 as an example, from the simulation, the ratio of these two values can be expressed as:

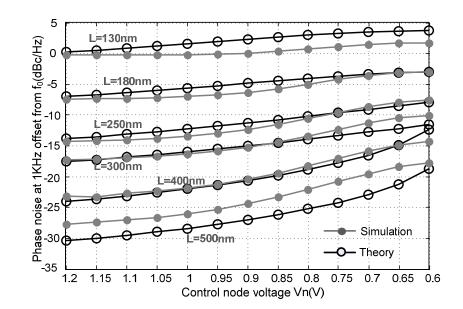

$$P = \frac{I_{3 \max}}{I_{3 inst}} = \frac{V_{n\max} - ((L_{\min} + L_{n1}) / 2L_{\min})V_{tn}}{V_{ninst} - ((L_{\min} + L_{n1}) / 2L_{\min})V_{tn}}$$

• L_{min} is the minimum allowable transistor length defined by process

Including the voltage tuning mechanism in the model: part 3


- Combine the two equations, and consider

- Research motivation
- Improved phase noise model
- Simulation results
- Measurement results
- Conclusions


The results show good comparison with simulation.

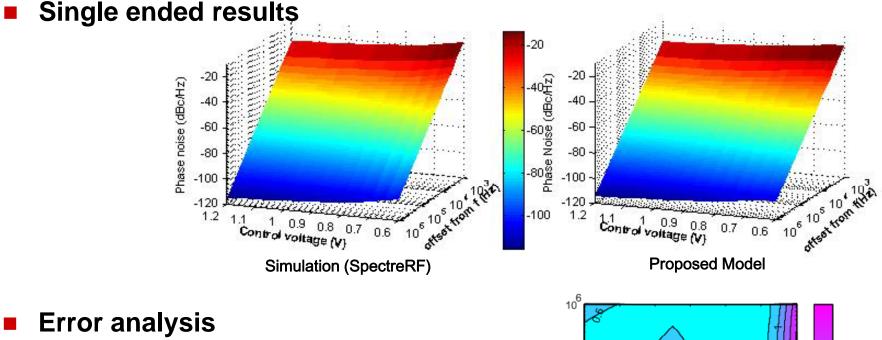
• Previous model only valid at highest frequency

Further model validation

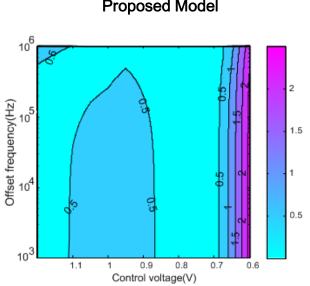
- Transistor lengths from 120nm to 500nm
- Phase noise simulations
- Error is less than 3dB over 0.6-1.2V tuning range



	Transistor Dimensions:		Performance at Vn=1.2V		Performance at Vn=0.6V	
Example number:	Wp5/Lp5 (um)	Wn1/Ln1 (um)	Oscillation frequency(MHz)	Phase Noise at 1KHz offset from f ₀ (dBc/Hz)	Oscillation frequency(MHz)	Phase Noise at 1KHz offset from f ₀ (dBc/Hz)
1	103/0.13	40/0.13	6521	-0.237	3592	1.645
2	132/0.18	48/0.18	3934	-7.4	2144	-2.94
3	168/0.25	56/0.25	2301	-14.25	1258	-7.53
4	153/0.3	50/0.3	1695	-17.27	928.8	-10.03
5	202/0.4	64/0.4	1026	-23.21	566	-14.32
6	260/0.5	80/0.5	687.5	-27.72	380.5	-17.77

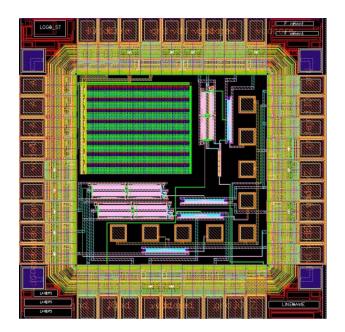

Verification of model for single ended designs

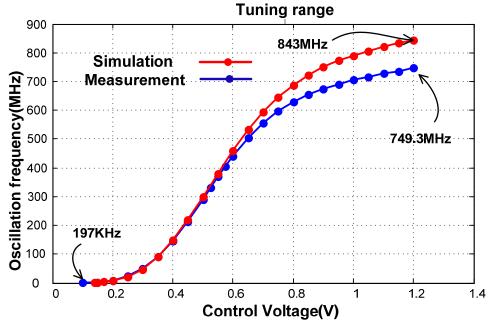
```
eox = 3.45e-11; % permittivity of the silicon oxide F/m
tox = 2.462e-9; %gateoxide thickness m
Cox = eox/tox; % gate oxide capacitance per unit areaf/m^2
                                                                                                   Mp6
Kfp = 1e-24; % Flcker noise coefficient
Kfn = 1e-24; % Flcker noise coefficient
Vt=0.25; % Threshold voltage for the process
                                                                                                  <sup>•</sup> Mp5
Vdd=1.2; % Vdd
Veff= (Vdd/2-Vt) ;
f= 1e3:1e3:1e6; % offset frequency with 1KHz step size
Wp=202e-6; % PMOS width
                                                                                                  Mn1
Wn=64e-6; % NMOS width
L=400e-9; %Transistor length
N=5; % number of delay stages
                                                                                                 h Mn2
p=(130+400)/(2*130); % Coefficient
Vninst=0.6:0.05:1.2; %Vn instant control voltage
Vpinst=1.2:-0.05:0.6; %Vp instant control voltage
f0=364e6:26.8e6:686e6; %oscillation frequency
for i =1:length(f0)
  for i=1:length(f)
  Lf2(i) = ((Vdd-p*Vt)/(Vninst(j)-p*Vt))^2*(1/(1*N*Veff^2))*((Kfn/(Wn*L*Cox)))*(f0(j)^2/f(i)^3)+((Vpinst(13)-
p*Vt)/(Vpinst(j)-p*Vt))^2*(1/(1*N*Veff^2))*((Kfn/(Wp*L*Cox)))*(f0(j)^2/f(i)^3); %phase noise calculation
logf2(i)=10*log10(Lf2(i));
  end
  logfcaltotal(j,:)=logf2;
end
load phasenoise simulation %(Load the Simulation results from cadence spectreRF)
logfsimulation=phasenoise_simulation';
```


error=abs(logfsimulation-logfcaltotal); % Calculate the abslute error between the Theory and simulation

• Vout

- From the surface plots, the maximum error is less than 3 dB.
- The proposed phase noise model holds valid for single ended oscillators as well.




- Research motivation
- Improved phase noise model
- Simulation results
- Measurement results
- Conclusions

Tuning summary

- One design example has been fabricated on a 120nm process
- Process model inaccuracies account for reduction in measured frequency.

Specification:	Design Example 1	
Supply voltage	1.2V	
Process	120nm	
Frequency range (measurement)	197KHz-749MHz	
Size	249μm×57μm	

Phase Noise measurements

L(f)=-87dBc@100KHzoffset from 749MHz

L(f)=-77.9dBc@100KHzoffset from 477MHz

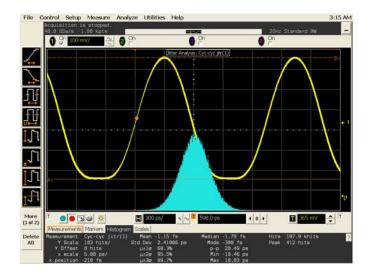
Tuning voltage effect on phase noise

- Results at 100KHz offset from carrier
- Measured results compare well with improved model

Control Voltage Vninst(V)	Oscillation frequency f ₀ (MHz)	Theoretical Phase Noise (dBC/Hz)	Measurement Phase Noise (dBC/Hz)
1.2	749	-86.775	-87.04
0.97	688.1	-83.9935	-84.45
0.74	573.2	-79.5658	-79.45
0.65	476.6	-76.8662	77.85

- Research motivation
- Improved phase noise model
- Simulation results
- Measurement results
- Conclusions

Conclusions


- We have demonstrated that VCO tuning voltage does has an impact on phase noise performance.
- Existing phase noise models for differential delay cells have been extended to include this factor.
- The improved phase noise model has been shown to hold true over a large design space.
- Silicon prototype results indicate that the model can accurately predict the phase noise results.
- The proposed model has been built into a matlab model to reduce the design time of delay cell based VCOs.

Questions?

email: kl05r@ecs.soton.ac.uk

Jitter summary

Specification:	Design Example 2					
Supply voltage	1.2V					
Process	0.13µm(St120nm)					
Frequency range	197KHz-749MHz					
Size	249μm×57μm					
	749MHz	RMS	2.41ps	0.18% of period		
		P-P	20.49ps	1.5% of period		
Jitter	505MHz	RMS	1.95ps	0.099% of period		
(Measurement)		P-P	16.96ps	0.84% of period		
	48.1MHz	RMS	8.75ps	0.042% of period		
		P-P	84.26ps	0.4% of period		
	749MHz		≈24mW			
Power	505MHz		≈15.6mW			
	48.1MHz		≈2.98mW			

