
Co-Simulation of mixed HW/SW and Analog/RF systems at
architectural level

Markus Damm
Institute of Computer

Technology
Vienna University of
Technology, Austria

damm@ict.tuwien.ac.at

Jan Haase
Institute of Computer

Technology
Vienna University of
Technology, Austria

haase@ict.tuwien.ac.at

Christoph Grimm
Institute of Computer

Technology
Vienna University of
Technology, Austria

grimm@ict.tuwien.ac.at

ABSTRACT
Analog systems are more and more functionally interwoven
with digital hardware/software systems. SystemC offers the
potential for a unified modeling approach for such systems:
SystemC AMS extensions and SystemC TLM extensions
are covering the domains of analog/signal processing sys-
tems, resp. hardware/software systems. Both extensions
use different Models of Computation to gain simulation per-
formance, most notably by abstracting timing information.

In this paper we present a method to couple SystemC AMS
extensions with TLM 2.0 extensions while maintaining the
simulation speedup for an overall system simulation.

1. INTRODUCTION
There is a growing trend for tighter interaction between
embedded hardware/software (HW/SW) systems and their
analog physical environment. This leads to systems in which
digital HW/SW is functionally interwoven with analog and
mixed-signal blocks such as RF interfaces, power electronics,
sensors and actuators, as shown for example by the commu-
nication system in Figure 1. We call such systems Embedded
Analog/Mixed-Signal (E-AMS) systems. Examples of E-
AMS systems are cognitive radios, sensor networks or sys-
tems for image sensing. A challenge for the development
of E-AMS systems is to understand the interaction between
HW/SW and the analog and mixed-signal subsystems at ar-
chitecture level. This requires some means of modeling and
simulating the interacting analog/mixed-signal systems and
HW/SW systems at functional and architecture levels.

SystemC [2] supports the refinement of HW/SW systems
down to RTL by providing a discrete-event (DE) simula-
tion framework. A methodology for generalized modeling
of communication and synchronization that builds on this
framework is available: Transaction Level Modeling (TLM)
[13] allows designers to perform abstract modeling, simula-

tion and design of bus-oriented HW/SW system architec-
tures. However, the SystemC simulation kernel has not
been designed for the modeling and simulation of analog,
continuous-time systems and lacks the support of a refine-
ment methodology to describe analog behavior from a func-
tional level down to implementation level.

System-level tools such as Simulink [1] and Ptolemy II [8]
are often used for functional modeling and simulation. They
may also capture continuous-time behavior, but do not tar-
get the design of E-AMS systems at an architecture-level.
Hardware description languages (HDLs) such as VHDL-AMS
[4] and Verilog-AMS [5] target the design of mixed-signal
subsystems close to implementation level, but these lan-
guages have limited capabilities to provide efficient HW/SW
co-design at high level of abstraction. Existing co-simulation
solutions mixing SystemC and Verilog/VHDL-AMS do not
provide high enough simulation performances and lack of-
fering a seamless design refinement flow for modeling mixed
discrete-event/continuous-time systems and HW/SW sys-
tems at architectural level.

In response to these needs from telecommunication, auto-
motive, and semiconductor industries, SystemC AMS ex-
tensions where introduced for SystemC [9], providing a uni-
form and standardized methodology for modeling E-AMS
systems. The SystemC AMS extensions are intended to ex-
tend the HW/SW oriented SystemC class library to pro-
vide a framework for functional modeling, architecture ex-
ploration, integration validation, and virtual prototyping of
E-AMS systems [3, 15]. The core Model of Computation
(MoC) of SystemC AMS is Timed Synchronous Dataflow
(TDF), which offers high simulation performance since it is
possible to compute a static schedule for the execution of
processes during simulation. This feature can be exploited
even more when using high data rates.

The Open SystemC Initiative (OSCI) recently released the
TLM 2.0 standard [13]. TLM 2.0 has a dedicated focus
on boosting simulation performance. It introduces differ-
ent coding styles (which can roughly be regarded as MoCs)
regarding the modelling of time, providing different trade-
offs between simulation accuracy and speed. In the so called
loosely timed coding style, processes are allowed to run ahead
of the global SystemC simulation time (temporal decoupling).
This coding style is the focus of our interest, since it of-
fers the most simulation performance gain. In this paper,

Receiver

Serial
Interface

Modulator/
demod.

DSP

Oscillator Clock
Generator

Micro -
controller

Host
processor

Memory

Power
Manage -

ment

to all
blocks

Audio
DSP

Imaging
DSP

ADC

Transmitter
DAC

RF
detector

Temp.
sensor

High
Speed
Serial

Interface

Calibration & Control Antenna
front - end

Figure 1: Example of an embedded analog/mixed-signal architecture: Communication System [9]

we present an approach for a MoC converter that can be
used to connect loosely timed TLM models with TDF mod-
els. We do this in a way that the simulation performance
enhancement capabilities of the two methodolgies are pre-
served effectively. This work falls roughly in the category of
heterogeneous system modelling with different MoCs. There
has been a lot of work in this area, especially with the focus
of SystemC (e.g. [14],[10], and also by some of the authors
in [7]), or with a more general approach (e.g. [11]).

The rest of this paper is organized as follows: We start with
a brief introduction of the TLM 2.0 loosely timed coding
style and the SystemC AMS TDF MoC. This is followed by
a discussion on how these two models can be connected by
exploiting certain similarities to maintain their simulation
efficiency. We then present the general structure of convert-
ers from TLM to TDF and vice versa in Sections 5 and 6,
and present an example where they are used in Section 7.
We conclude in Section 8.

2. OSCI TLM 2.0 LOOSELY TIMED COD-
ING STYLE

In the loosely timed coding style (LT-TLM), introduced in
the draft 2 of the OSCI TLM 2.0 standard [13], a non-
blocking method interface is used where initiator processes
generate transactions (the payload) and send them with a
method call to target processes. The speciality of LT-TLM
is the possibility to annotate a transaction with a time delay
d to mark it (in the case of d > 0) as a future transaction.
That is, LT-TLM allows initiator processes to ”warp ahead”
of simulation time. The target processes must deal with
these future transactions accordingly. They have to store
them in a way such they can access and process delayed
transactions at the right time, e.g. by using the payload
event queue (PEQ) [6] of TLM 2.0.

The idea of this approach is that context switches on the
simulation host system (generally triggered by wait() state-
ments) are reduced and thus simulation performance is gained.
Instead of letting initiator and target repeatedly produce
and process a transaction respectively, an initiator can pro-
duce a chunk of transactions in advance, which is then pro-
cessed by a target (ideally) at once. However, this may lead
to time-twisted transactions, i.e. the order of arrival of two
transactions at one target is different from their temporal

order, causing potential causal errors.

LT-TLM basically allows processes to run according to their
own, local simulation time. To organize this, TLM 2.0 pro-
vides the facility of the quantum keeper. Processes can use
the quantum keeper to keep track of their local time warp,
and yield to the SystemC simulation kernel after a certain
time quantum is used. Typically, a smaller time quantum
will reduce the chance of causal errors while a greater quan-
tum increases the simulation performance.

3. SYSTEMC AMS TDF
The main MoC provided by SystemC AMS is the Timed
Synchronous Dataflow (TDF) MoC. It is a timed version of
the (originally untimed) Synchronous Dataflow (SDF) MoC
[12], where processes communicate via bounded fifos. The
number of data tokens produced and/or consumed by a pro-
cess (the data rate) is constant for all process firings.

The advantage of SDF is that the schedule of process exe-
cution can be precomputed, such that the simulation kernel
is only engaged with executing this static schedule, which
makes the simulation of SDF models very fast. The special-
ity of the SystemC AMS TDF MoC is that a certain time
span (the sampling period) is associated with token con-
sumption and production. It is an attribute of the TDF port
classes, which are analogous to the SystemC port classes, re-
spectively. Via TDF ports, TDF modules are connected to
each other by TDF signals. A TDF module encapsulates
the actual process as a method with the standard name
sig_proc(). In the current SystemC AMS prototype, the
sampling period has to be set only at one TDF port of one
TDF module of a connected set of TDF modules. The sam-
pling periods of all other TDF ports within the cluster are
then a result of this one given sampling period.

For example, if the sampling period of an input port p1 of
a TDF Module M1 is set to 2 ms, with a data rate of 3,
the consumption of one token takes 2 ms. such that the
consumption of all 3 tokens (when M1’s sig_proc() fires)
takes 6 ms. If M1 contains also an output port p2 with data
rate 2, the sampling period of p2 is 6ms divided by the data
rate of 2, resulting in 3 ms. An input port p3 of a TDF
module M2 which is connected to p2 via a TDF signal now
also has a sampling period of 3 ms.

4. CONNECTING LT-TLM AND TDF
At a first glance, bringing these two approaches together
seems to be futile. On the one hand, there is the LT-TLM
approach with its local time warps decoupled from the global
simulation time. On the other hand, we have the strictly
timed TDF approach which runs at an unstoppable pace.
But by taking a closer look at how the TDF simulation
works when using a static schedule (as it is the case with
the current SystemC AMS prototype), we find surprising
similarities.

The SystemC AMS simulation kernel is using its own sim-
ulation time, whose current value is returned by the TDF
module method sca_get_time() (from now on denoted by
tTDF). The current SystemC simulation time (from now
on denoted by tDE) is returned by the DE module method
sc_time_stamp(). By DE, we denote the discrete event
MoC implemented by the SystemC simulation kernel, while
a DE module denotes the sc_module-instances.

If a pure SystemC AMS TDF model is used in a simulation,
the SystemC AMS simulation kernel is blocking the DE ker-
nel all the time, so the DE simulation time doesn’t proceed
at all. However, there might be a need to connect and syn-
chronize TDF modules to DE modules. SystemC AMS pro-
vides converter ports for this cause, namely sca_scsdf_in

and sca_scsdf_out. They can be used within TDF modules
to connect to instances of the SystemC DE sc_signal.

If there is an access to such a port within the sig_proc()

method of a TDF module, the SystemC AMS simulation ker-
nel interrupts the execution of the static schedule of TDF
modules and yields to the SystemC DE simulation kernel,
such that the DE part of the model can now execute, effec-
tively proceeding tDE until it is equal to tTDF . Now, the DE
modules reading from signals driven by TDF modules can
read their new values at the right time, and TDF modules
reading from signals driven by DE modules can read their
correct current values.

TDF-module M1

p2p1

2 ms
rate 3

3 ms
rate 2

26 ms
tTDF

32 ms 38 ms

20 ms 38 ms
tDE

26 ms 32 ms 38 ms

20 ms 38 ms

ms ms
token
valid at

synchronization
tTDF↔ tDE

4038363432302826 26 29 32 35 38 4142

Figure 2: tDE ↔ tTDF synchronization

Figure 2 shows an example using the TDF module M1 from
Section 3. The data tokens consumed are on the left axis,
and those produced are on the right axis. The numbers
beneath the tokens denote the time (in ms) at which the re-
spective token is valid. The time spans above the tokens in-
dicate the values of tTDF when the respective token are con-
sumed resp. produced. The time spans below indicate the
according values for tDE . At the beginning of the example,
tTDF > tDE already holds, until tTDF = 38ms. Then the
SystemC AMS simulation kernel initiates synchronization,
for example because M1 contains a converter port which
it accesses at that time, or because another TDF module
within the same TDF cluster accesses its converter port.

The important conclusion is that TDF modules also use a
certain time warp. In general, TDF modules run ahead of
SystemC simulation time, since tTDF ≥ tDE always holds.
Further time warp effects result from using multi-rate data
flow. When a TDF module has an input port with data
rate > 1 it also receives ”future values” with respect to tDE ,
and even tTDF . When a TDF module has an output port
with data rate > 1, it also sends values ”to the future” with
respect to tDE and tTDF . The difference to TLM is that
the effective local time warps are a consequence of the static
schedule, with the respective local time offsets only varying
because of interrupts of the static schedule execution due to
synchronization needs.

In the following two Sections we describe how the streaming
data of TDF signals can be converted to TLM 2.0 transac-
tions and vice versa, effectively proposing general TLM2↔TDF
converters. We do this in a way such that the temporal de-
coupling approach of LT-TLM is exploited to maintain a
high simulation performance. The transaction class used
will always be the TLM 2.0 generic payload.

5. CONVERTING FROM LT-TLM TO TDF
The principal idea of a TLM→TDF converter is to take
write-transactions (i.e. with a command set to
TLM_WRITE_COMMAND) and stream their data to a TDF signal.
However, we are confronted with several difficulties.

First of all, we can’t expect the data from the TLM side
to arrive at certain rates, even if we take the time warp
into account. We might get huge amounts of data within
short time spans, and almost no data for long time spans.
Nevertheless, we have to feed an unstoppable data token
consumer, namely the TDF reading side.

The obvious solution for this problem is to use an internal
fifo within the converter to buffer the incoming data. If a
transaction causes a buffer overflow (when the internal buffer
is chosen to be of a fixed size), it is returned with an error
response. If, on the other hand, the buffer is empty, default
values are written to the TDF side to fill the gaps (e.g. ze-
ros). We could also choose to throw a simulation error in
that case. Another advantage of using an internal buffer is
that the size of the data section of the write-transactions can
be set independent from the data rate of the TDF output of
the converter. Especially, the transaction data size can vary
over the course of the simulation.

However, as already mentioned in 2, transactions may arrive
with twisted time warps, e.g. since they came from different
initiators. Therefore, we can’t write the transaction data to
the buffer right away. Instead, we write the transaction to
a PEQ, which stores them in the order of their procession
time, such that the twists are resolved. When the local time
of the converter proceeded far enough for a transaction in
the PEQ to be processed, its data gets written to the buffer.
To this end, the PEQ is checked for transactions with a
time stamp smaller or equal to the current local time of the
converter at every sig_proc() execution.

Another issue is synchronization. Since the converter is a
TDF module, it might run way ahead of tDE , and the ini-
tiators feeding the converter might not have had the chance

DE-module TDF-module

port
to

port

TDF-DE in
converterDE-signal

TDF out TDF out

tlm_target_socket TD
F-signal

m
ethod call

nb_transport_fw() sig_proc()

Figure 3: The TLM→TDF converter

to produce transactions sufficiently. Therefore, if there are
no transactions available in the PEQ when the sig_proc() is
processed, and the buffer also holds not enough data for the
output, the SystemC simulation kernel must get the chance
to catch up. This is done by connecting the converter to
an sc_signal using a SystemC AMS converter port. If a
reading access is now performed on this converter port, the
SystemC AMS simulation kernel interrupts the procession
of the static schedule, and the SystemC simulation kernel
regains control and can proceed the SystemC simulation (in-
cluding the TLM initiator modules) until tDE = tTDF . Fig-
ure 3 shows an overview of the architecture of the proposed
converter. The core is a TDF-module, which contains the
PEQ, the buffer, and the port to the TDF side. It is encap-
sulated within a DE-module, which implements the TLM 2.0
transport interface. For synchronization, the TDF module
is connected to a DE-signal via a SystemC AMS converter
port. Note that the DE-signal needs no driver; simply ac-
cessing it from within the TDF module is sufficient to trigger
synchronization.

6. CONVERTING FROM TDF TO LT-TLM
When converting from TDF to TLM, we want to bundle the
streaming TDF data into the data section of a transaction
and send it to the TLM side. This would be an easy and
straightforward task if we would consider the converter (i.e.
the TDF side) to act as an TLM initiator. In this case, the
transaction’s command would be set to TLM_WRITE_COMMAND,
and the delay of the transaction could be set to the difference
of tDE and the valid time stamp of the last token sent via the
transaction (i.e. tTDF + token number·sampling period).

However, the TDF models we focus on here just provide
streaming input to the TLM side, and the idea of such mod-
els acting as a TLM initiator is as realistic as an A/D con-
verter acting as a bus master. It can make sense to view
certain TDF models as TLM initiators, e.g. models of signal
processing algorithms which are supposed to run on a digi-
tal signal processor in the implementation. But these TDF
models might access resources via a bus in various ways,
such that there is no obvious conversion semantics here. For
example, it is not clear how the TDF side should provide
the transactions with an address.

Therefore, we focus on an approach where the initiators are
on the TLM side, sending read-transactions to the converter,
which copies the data tokens it receives from the TDF side
into the data section of the transaction and returns it. The
advantage of this approach is that it is pretty similar to the
TLM→TDF conversion direction. For example, the con-

verter needs an internal buffer to store the incoming TDF
data tokens, for similar reasons as discussed in Section 5.
Here, the TLM side might request data of varying length
at varying times, while the TDF side provides data at an
unstoppable pace.

DE-module
TDF-module

TDF-DE in
converter DE-signal

TDF in
tlm_target_socket m

ethod call

port
to

port

TDF in

TD
F-signal

sig_proc()
nb_transport_fw()

Figure 4: The TDF→TLM converter

We also use a PEQ to store the incoming transactions, such
that time delay twists are resolved. Here, we use the PEQ
in a way such that an event is produced when a transac-
tion within the queue is ready. In that case, the transaction
is taken from the queue, and it is checked whether the in-
ternal buffer provides sufficiently many data tokens to fill
the transaction’s data section. Here, we also have to make
sure that we don’t return ”future” tokens from the transac-
tion’s point of view. Note that the presence of such tokens
in the internal buffer is perfectly possible when using multi-
rate data flow. If enough valid data tokens are present, the
transaction is returned with them. If not, it is returned with
an error response.

When the internal fifo is chosen to be of finite size, buffer
overflows can occur. Therefore, at every sig_proc() ex-
ecution, it is checked whether the internal buffer contains
enough space to take the next chunk of data tokens pro-
vided by the TDF side. If not, the converter yields to the
SystemC simulation kernel with the same converter port ac-
cess technique described in Section 5. This gives the TLM
side the chance to produce more reading transactions, and
might proceed tDE far enough for transactions in the PEQ
to become ready. If there is still not enough space in the
internal buffer, the surplus data tokens are simply discarded
and a warning is raised. We could also choose to throw an
simulation error here.

As it can be seen in Figure 4, the architecture of the TDF→TLM
converter is pretty similar to the architecture of the TLM→TDF
converter. Since the TDF part now does not need to access
the PEQ, it is contained in the toplevel DE-module.

7. EXAMPLE SYSTEM
To test our conversion approach, we implemented an exam-
ple system containing two TDF sources, two TDF drains,
three TLM digital signal processing (DSP) modules and a
TLM bus (see Figure 5). The idea of this system is that the
data coming from sourcei is processed by any of the DSPs,
and the results are then passed to the respective draini

(i = 1, 2, 3). Here, the exact nature of the computations
performed by the DSPs were not the focus of our interest.
However, a possible example would be a software defined ra-
dio, where the TDF sources would provide data to be modu-
lated (or demodulated). The modulation (or demodulation)

schemes to be applied to the source data could be different
for every source, but every DSP provides the capabilities
to perform them. That is, every DSP checks the sources
for new data, reads them, processes them accordingly, and
writes the results to the appropriate drain.

1 3

1

1 2

2

2

3

3

4

Figure 5: Example system

Our interest here is to demonstrate the functional correct-
ness of our converters and to observe accuracy / simulation
speed tradeoffs, typical for loosely timed TLM models. The
loss of accuracy in this case manifests itself in data pack-
ages arriving at the signal drains in the wrong order. This
is possible in principle, since the DSPs run independently
from each other. Nevertheless, when the DSPs run in lock
step with the simulation kernel (i.e. their time warp is set to
0), the procession delay will make sure that the data pack-
age order is preserved. However, when we allow the DSPs
to warp ahead in time locally, such data package twists can
occur.

Regarding the simulation speed, we measure the number of
context switches in the TLM initiators, since a high number
of context switches usually increases simulation time. That
is, every point in simulation time the simulator switches to
the process of one specific DSP accounts for one context
switch. We simulated about 16 minutes of time, in which
about 14,000 data packages with 128 values each were re-
ceived by the drains. The sampling period of the sources
was 1 ms.

Figure 6 shows the results when using different time warp
values. The straight line indicates the simulation speedup
factur ranging from 1 to 120. The other line shows the
corresponding error rate. With a time warp of 100ms, we
didn’t experience any errors, while getting about 20 times
less context switches. A time warp of 250ms still results in
an error rate well below 0.1%, with a speedup factor of 50.
If errors are acceptable at all, this is an excellent accurcy /
simulation speed tradeoff. On the other hand, a 600ms time
warp results in a 10% error rate, while the speedup factor
of about 120 is not much of a further gain.

8. CONCLUSION AND FUTURE WORK
In this paper, an approach on how to connect SystemC AMS
models with loosely timed TLM 2.0 models using temporal
decoupling was presented, with the focus on the SystemC
AMS side acting as a streaming data producer and/or con-
sumer. It was shown that the loosely timed coding style of
TLM 2.0 can be exploited efficiently to fit with SystemC
AMS’s TDF, preserving the high simulation performance of

both Models of Computation. We described generic con-
verter elements implementing our approach. A small exam-
ple model was implemented which indicated the converters
functional correctness, while the general simulation perfor-
mance / accuracy tradeoff typically found in loosely timed
TLM models could still be observed.

Future work in this area will focus on two aspects: To for-
malize the conversion problem at hand more rigidly, pos-
sibly including a more formal description of the TLM 2.0
loosely timed coding style. And to explore and implement a
more structured and sophisticated TLM↔TDF conversion
approach which might be able to cover also the case of TDF
models acting as TLM initiators.

9. REFERENCES
[1] The Mathworks Simulink.

http://www.mathworks.com/products/simulink.

[2] SystemCTM, 2005. IEEE Std. 1666.

[3] SystemC AMS extensions Requirements Specification,
2007. OSCI AMS Working Group.

[4] VHDL-AMS, 2007. IEEE Std. 1076.

[5] Accellera. Verilog-AMS Language Reference Manual
Version 2.2, 2004.
http://www.verilog.org/verilog-ams/.

[6] J. Aynsley. OSCI TLM2 User Manual. Technical
report, Open SystemC Initiative, 2007.

[7] M. Damm, F. Herrera, J. Haase, E. Villar, and
C. Grimm. Using Converter Channels within a
Top-Down Design Flow in SystemC. In Proceedings of
the Austrochip 2007, 2007.

[8] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Neuendorffer, S. R. Sachs, and Y. Xiong.
Taming heterogeneity — The Ptolemy approach.
Proceedings of the IEEE, Special Issue on Modeling
and Design of Embedded Software, 91(1):127–144,
January 2003.

[9] C. Grimm, M. Barnasconi, A. Vachoux, and
K. Einwich. An Introduction to Modeling Embedded
Analog/Mixed-Signal Systems using SystemC AMS
Extensions, June 2008.

[10] F. Herrera and E. Villar. A Framework for Embedded
System Specification under different Models of
Computation in SystemC. In Proceedings of the
Design Automation Conference, 2006.

[11] A. Jantsch. Modelling Embedded Systems and SoCs.
Morgan Kaufmann, June 2003.

[12] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal
processing. IEEE Transactions on Computers,
C-36(1):24 – 35, 1987.

[13] Open SystemC Initiative. OSCI TLM2.0.
http://www.systemc.org.

[14] H. Patel and S. Shukla. SystemC Kernel Extensions
for Heterogeneous System Modeling: A Framework for
Multi-MoC Modeling. Springer, July 2004.

[15] A. Vachoux, C. Grimm, and K. Einwich. SystemC
Extensions for Heterogeneous and Mixed
Discrete/Continuous Systems. In International
Symposium on Circuits and Systems, Kobe, Japan,
May 2005.

timewarp
(ms)

error rate

simulation speedup factor
regarding context switches

0

50

100

150

200

250

2.5%

5%

7.5%

10%

12.5%

0 100 200 300 400 500 600

Figure 6: Speed vs. accuracy tradeoff

