
TDF-process P2

p2p1

2 ms
rate 3

3 ms
rate 2

26 ms
tTDF

32 ms 38 ms

20 ms 38 ms
tDE

26 ms 32 ms 38 ms

20 ms 38 ms

ms ms
token
valid at

synchronization
tTDF ↔ tDE

4038363432302826 26 29 32 35 38 4142

time warp
(ms)

error rate

simulation speedup factor
regarding context switches

0

50

100

150

200

250

2.5%

5%

7.5%

10%

12.5%

0 100 200 300 400 500 600

1 3

1

1 2

2

2

3

3

4

Receiver Serial
Interface

Modulator/
demod.

DSP

Oscillator Clock
Generator

Micro -
controller

Host
processor

Memory

Power
Manage -

ment

to all
blocks

Audio
DSP

Imaging
DSP

ADC

Transmitter
DAC

RF
detector

Temp.
sensor

High
Speed
Serial

Interface

Calibration & ControlAntenna
front-end

Initiator TargetBUS

transport(transaction)

TLM

Master SlaveBUS

req, ack, data, etc…

RTL

DE-module
TDF-module

TDF-DE in
converter DE-signal

TDF in
tlm_target_socket m

ethod call

port
to

port

TDF in

TD
F-signal

sig_proc()
nb_transport_fw()

DE-module TDF-module

port
to

port

TDF-DE in
converterDE-signal

TDF out TDF out

tlm_target_socket TD
F-signal

m
ethod call

nb_transport_fw() sig_proc()

The TDFTLM con-
verter gets READ
transactions, and
copies the buffer data
to the transaction.
It triggers synchroni-
zation when its inter-
nal buffer is full. If it is
empty, it returns an
error response.

The TLMTDF con-
verter gets WRITE
transactions, and
copies the transaction
data to the buffer.
It triggers synchroni-
zation when its inter-
nal buffer is empty. If
it is full, it returns an
error response.

An example system

Co-Simulation of mixed HW/SW
and Analog/RF systems
at architectural level
Markus Damm, Jan Haase, Christoph Grimm Institute of Computer Technology

Contact:
damm@ict.tuwien.ac.at
haase@ict.tuwien.ac.at
grimm@ict.tuwien.ac.at

The challenge: Co-simulation of systems
containing digital hardware, software and
analog hardware.

The tool: SystemC with the extension
libraries SystemC AMS and TLM 2.0

some generic payload attributes

Command: TLM_READ_COMMAND,
 TLM_WRITE_COMMAND,
 TLM_IGNORE_COMMAND
Address: type uint64
Data pointer: type unsigned char*
Data length: type unsigned int
Respons status: TLM_OK_RESPONSE,
 TLM_INCOMPLETE_RESPONSE,
 TLM_GENERIC_ERROR_RESPONSE,
 TLM_ADDRESS_ERROR_RESPONSE,…

Transaction Level modelling (TLM) bundles the low-level communication events of a bus protocol
into a single element called transaction. A pointer to the transaction is passed between initiators
and targets using a method interface. For example, a processor might send a read request
transaction to a memory, which then copies the requested data to the data section of the transac-
tion. The TLM 2.0 data structure for a transaction is the generic payload.
TLM 2.0 allows the transactions to be annotated with a timing delay when using the loosely
timed coding style. That is, processes can send future transactions while locally running ahead
of simulation time (temporal decoupling or “time warp”). This reduces context switches, but also
may introduce simulation inaccuracies like data being processed out of order.

Timed Data Flow (TDF) is the main Model of Computation (MoC) used by
SystemC AMS. It is a timed variant of the well known Synchronous Data-
flow (SDF) MoC, where processes consume and produce data tokens
with a constant data rate every time they are firing.
In the TDF MoC, a sampling period is associated with each token
consumption/production. Since a static schedule can be computed before
the simulation, TDF models allow very fast simulation of data flow ori-
ented systems often found in signal processing.
SystemC AMS has its own simulation time (tTDF), which usually runs ahead
of SystemC simulation time (tDE). The figure below shows an example,
where you also see for each token the values for tTDF and tDE, when the
token is processed, as well as the time when it is valid regarding simu-
lated time. Therefore, we have temporal decoupling also in TDF.

P1 P2

P3

1 3

2

4

3

1

2

3

an example of an SDF-cluster
with three processes

Conversion between TLM and TDF: the general idea
 • load streaming TDF data into transactions
 • stream transaction data into TDF signals
 • fit together the temporal decoupling on both sides

Issues to resolve:
 • TLM transactions may arrive irregularly
  a buffer for the data is used
 • TLM transactions may arrive out of order
  the transactions are stored in a payload event queue
 (PEQ) as long as possible. The PEQ resolves the
 order
 • The TDF cluster may run too far ahead of TLM
  Synchronization is triggered when needed by
 accessing a TDFDE converter port

An example system was implemented using the converters described above. It consists of four
DSPs, which randomly read from one of three TDF sources, process the input, and write the re-
sults to the respective TDF output streams. It is an abstract system, though a possible application
could a software defined radio.
This example serves two purposes: Showing the functional correctness of the conversion ap-
proach, and to observe simulation speed vs. simulation accuracy tradeoffs, typical for loosely
timed TLM models. In this case, simulation speed was measured in terms of context switches of
the DSPs, while simulation errors manifested themselves as data packets arriving out of order.

Example system using the converters above.
The DSPs and the Bus are modelled using TLM.

