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ABSTRACT 

Automatic generation of analog and mixed-signal (AMS) 

behavioral models from specifications is an important 

component of top-down design methodologies. In this 

paper, we present an expert system solution to this 

challenge. Based on a representation of the model 

functionality, our expert system manipulates a library of 

previously developed models to synthesize a new model. 

Automatically generated VHDL-AMS behavioral models 

are shown to be of expert quality.  

1. INTRODUCTION 

The adoption of top-down design methodologies fueled the 

need for the automatic generation of behavioral models 

which started as (and still mostly is) a manual 

development process. 

Roychowdhury [1] lists several broad methodologies for 

automated behavioral modeling including algorithmic 

methods, symbolic methods, black-box methods (such as 

data-mining, neural networks, genetic algorithms and 

multi-dimensional tables) and automation of the manual 

modeling process. All of these methods, except for the 

automation of the manual modeling process, are bottom-up 

methods (i.e. they start from a given circuit description, 

often a netlist, to develop a behavioral model). A survey of 

these methods is given in [2]. In top-down design 

methodologies though, model creation precedes circuit 

design and circuit specifications are a product of design 

space exploration which requires behavioral models. 

Attempts to automate the manual modeling process 

starting from model specifications (rather than a given 

netlist) are relatively fewer compared to bottom-up 

approaches. Authors in [3] automated a manual modeling 

process for continuous-time Delta-Sigma modulators. An 

analog behavioral model synthesizer described in [4] 

expresses model behavior in the form of functional 

diagrams drawn as an interconnection of symbols. Each 

symbol stands for an elementary analog behavior. 

Behavioral elements are coded separately and then 

combined to generate the model HDL-A code. Two 

approaches for the generation of behavioral VHDL models 

from descriptions written in natural language are 

presented in [5]. 

The most prevalent approach towards creating behavioral 

models in industry though, is manual abstraction [1]. 

Manual efforts start with an understanding of the circuit 

but do not require the circuit netlist to develop an 

equivalent model. Manual abstraction (e.g. [6] - [9]) 

usually results in simulation speedups orders of magnitude 

higher than automated efforts (e.g. [10] - [12]). Although 

fast-SPICE simulators don’t provide parameterized 

models, they achieve speedups similar to those achieved by 

automated modeling.  

The development of parameterized, AMS behavioral 

models for all circuit classes including strong nonlinear 

behaviors, with multiple-inputs and multiple-outputs, 

which achieve high speed gains and do not require the 

circuit netlist as an input, is a manual process reserved to 

modeling experts working side-by-side with design teams. 

An attempt to automate this development process naturally 

lends itself to an expert system solution due to the lack of 

an algorithmic solution which meets all these 

requirements.  

Case-based reasoning (CBR) is an approach to knowledge-

based problem-solving employed in expert systems [13] 

that has been commonly used in code understanding and 

generation. A survey of CBR techniques for CAD systems 

used in design is given in [14], and a review of the 

applicability of these techniques to code generation is 

given in [15]. A CBR system which generates digital 

models is given in [16]. 

In this paper, we present an architecture for a case-based 

reasoner which automates the generation of VHDL-AMS 

behavioral models for AMS circuits (Section 2). Section 3 

describes the knowledge representation on which our work 

is based. Due to the limited space of the paper, we will 

focus on how the CBR adapts VHDL-AMS models 

(Section 4). Two examples of generated models are then 

listed and discussed in Section 5. The whole system is fully 

described in [17]. 



2. CBR ARCHITECTURE 

 

Figure 1: CBR architecture developed for model generation. 

Figure 1 illustrates the architecture of the developed CBR 

system. The Case Library is a database of VHDL-AMS 

models’ representations. Each case represents a single 

model. Cases are indexed according to their salient 

features (interface and behavior). Using knowledge about 

different circuit architectures and levels of abstraction 

stored in the Models Taxonomy database, the Specs 

Collection Module collects specifications for a behavioral 

model through a graphical user interface (GUI). The user 

specifies the model’s class (VCO, DAC, ADC, etc.), ports 

and their functions (input, output, reference, ground, etc.), 

and model behavior along with the associated generics. 

Specifications are then passed to the Retrieval Module 

which relies on an adaptation-guided retrieval algorithm 

[13]. The algorithm is based on heuristic rules expressed 

in Prolog predicates and is biased to select cases most 

easily adaptable to the current situation. The retrieved case 

is compared against the given specifications to determine 

the adaptation effort required, and the Adaptation Module 

manipulates the retrieved case to synthesize the specified 

model. The new model is finally fed back into the CBR to 

be added to the Case Library. 

The adaptation of VHDL-AMS models is accomplished by 

manipulating a Prolog representation of the VHDL-AMS 

source obtained by an open source SWI-Prolog Parser [18] 

with the help of a set of Prolog rules in the Adaptation 

module and the required knowledge for the specified 

adaptation as will be explained in detail in the next 

section.  The modified Prolog representation is finally 

transformed back to readable VHDL-AMS source code. 

The output of the Prolog Parser also serves as an input to 

the Semantics Extraction module which helps the 

knowledge engineer augment the syntactic representation 

with semantics about the model’s functionality. 

We used XPCE, SWI-Prolog’s native GUI library [19] to 

implement the GUI, and SWI-Prolog ODBC interface [20] 

in the Retrieval module to issue SQL queries to an Access 

database. 

3. KNOWLEDGE REPRESENTATION 

In case-based reasoning, knowledge representation covers 

the cases stored in the expert system’s database (case 

representation), and the adaptation strategies used to adapt 

these cases to fit a new situation. Each case has a semantic 

and a syntactic representation. The syntactic representation 

is the Prolog parse tree substitute of the VHDL-AMS 

source code which enables its manipulation. The rest of 

this section deals with the semantic representation. 

Semantic representation captures the qualitative 

knowledge about a behavioral model. Our representation is 

based on the idea that total circuit behavior can be 

decomposed into a number of separable behaviors. Each of 

these behaviors is called an effect. Effects are classified 

into ideal, non-ideal, and auxiliary, only in relation to a 

given model. An ideal effect represents the ideal behavior 

of the circuit  (e.g. amplification in a amplifier). A non-

ideal effect represents a particular non-ideality in the 

behavior (e.g. propagation delay in an AND gate) and an 

auxiliary effect complements an ideal effect inside the 

model, but is not in itself an ideal effect (e.g. binary-to-

decimal conversion in digital-to-analog converters). 

Besides effects, an AMS behavioral model is also 

represented in terms of some macro-modeling elements, 

and the heuristic rules that experts use to glue these effects 

and macro-models together inside the architecture of a 

model. 

This representation is captured into a graphical conceptual 

model [13] which is translated into Prolog predicates and 

augmented with additional semantics about the model’s 

effects, generics, and ports. An example diagram of a 

generated digital-to-analog converter (DAC) model 

(Section 5) is shown in Figure 2. 

The border of the conceptual diagram represents the model 

entity, while the model’s behavior (architecture) is 

captured inside the border of the diagram. Behavior is 

decomposed into effects (rectangular boxes) and macro-

modeling elements (vout and iout). Unipolar digital-to-

analog conversion is the ideal effect. Delay and DC shift 

are non-ideal effects, while binary-to-decimal conversion 

and extraction of converter resolution are auxiliary effects. 



 

Figure 2: Conceptual diagram of a DAC behavioral model. 

Arrows represent VHDL-AMS objects such as signals, 

terminals, and quantities declared inside the model 

architecture. 

Classes of effects are stored in a separate library and 

instances of these classes are called in each of the cases 

inside the CBR case library. Each effect class consists of a 

VHDL-AMS source code template, VHDL-AMS objects 

used inside the template, and effect-specific adaptation 

rules to enable the integration of this effect inside any 

behavioral model. An example of a delay effect class is 

given in Listing 1.  

4. ADAPTATION 

We implemented four basic adaptation strategies: 

Removing an effect, adding an effect, output current to 

output voltage transformation and vice versa, and single-

ended operation to differential operation transformation 

and vice versa. 

The conceptual diagram represented in Figure 2 intuitively 

exposes the basic procedures used to implement these 

strategies. 

4.1 Remove an Effect 

The simplified pseudo-code of the algorithm used to 

remove an effect from a given model is: 

1- Remove the code template corresponding to the 

effect to be removed from the model. 

2- Remove associated generics if they are not also 

associated with other effects. 

3- Depending on the adaptation rules of the effects 

preceding and following the effect to be removed, 

replace the output object of the effect to be 

removed with its input object, or vice versa, and 

remove the declaration of the substituted object. 

4.2 Add an Effect 

To add an effect to a given model, the following steps are 

executed: 

1- Retrieve the effect to be added from the effects’ 

classes library. 

2- Determine an insertion point by consulting the 

user about the right sequence of effects. 

3- Add generics associated with the new effect class 

to the model’s generic list. 

4- Declare the output object of the effect to be added. 

5- Add the effect code template to the model’s 

architecture. 

6- In the added effect code template, replace the 

input object with the output object of the effect 

preceding the one added. 

7- In the code template of the effect following the 

added one, replace the input object with the object 

declared in step 4. 

4.3 Output Current to Output Voltage 

Transformation and Vice Versa 

Figure 3 illustrates the idea behind the current-to-voltage 

transformation. The opposite is similar. AMS behavioral 

Listing 1: Delay effect class. 

%effect_class(ClassName,GenericList,Inputs,Outputs,IntermediateVars

, 

% PrologCode,RulesForAddingEffect,RulesForRemovingEffect). 
effect_class(delay,[Td],[In1],[Out1],[],code,AddRules,RemoveRules):- 

code=vhdl_process(_,_,null,[In1],[], 

[vhdl_if(null, null, rel(=, vhdl_call(domain, []),  

vhdl_call(quiescent_domain, [])), 

[signal(null, Out1, null, null, [event(vhdl_call(In1, []), null)])], 

[signal(null, Out1, null, null, [event(vhdl_call(In1, []),  

vhdl_call(Td, []))])])]), 

AddRules=[concat_atom([In1,'_',delay,'_',time],Td), 

concat_atom([delayed,'_',In1],Out1), 

generics_types([Td],[real]), 

var_type([Out1],[type(In1)]), 

rename(In1,Out1)], 

RemoveRules=[rename_variable(Out1,In1)]. 



models usually have an output stage whose macro-model 

representation is that of a current (voltage) source. 

 

Figure 3: Conceptual diagram of a current source output 

stage (a) and its equivalent voltage source output stage (b). 

This stage can be thought of as an effect whose inputs are 

the values of the current (voltage) source and the output 

resistance and capacitance, and whose output is the output 

terminal. The values of the current (voltage) source of the 

output stage would be the result of some computations 

performed in the model according to its functionality; the 

output of a previous effect. 

This adaptation strategy substitutes a current (voltage) 

output stage effect with an equivalent voltage (current) 

output stage effect, and multiplies the input of the effect by 

a gain quantity which is added to the model’s list of 

generics. 

4.4 Single-ended Operation to Differential 

Transformation and Vice Versa 

 

Figure 4: Single-ended (a) to differential (b) transformation. 

This adaptation strategy builds on the notion explained in 

the above section; an output stage of an AMS behavioral 

model can be treated as an effect. Figure 4 illustrates how 

a single-ended output stage is transformed into a 

differential output stage. The opposite is similar. To make 

the transformation from single-ended to differential 

operation and vice versa the adaptation module substitutes 

stages the same way it substitutes effects. 

The retrieval and the adaptation algorithms enable the 

generation of models whose types are not represented in 

the case library. For example, the case library may contain 

an AND gate model with a propagation delay non-ideality, 

but lacks a delay element model. Upon the user’s request 

to generate a delay element model, the CBR is capable of 

reusing the non-ideal delay effect implemented in the 

AND gate inside the delay element (as an ideal effect). 

5. EXAMPLE 

An automatically generated DAC model is given in Listing 

Listing 2: Automatically generated DAC model. 

01 entity d2a is  

02   generic (td         : time := 1.0 ns; 

03      -- trise     : real := 0.0e-9; 

04      -- tfall      : real := 0.0e-9;  

05      vrange : real := 5.0; 

06      vlow     : real := 0.0); 

07  port (terminal aout : electrical; 

08      signal     din   : in  std_logic_vector); 

09  constant n : integer := din'length; -- Extract Converter Resolution 

10 end d2a; 

11 architecture machine of d2a is 

12  quantity vout across iout through aout; 

13  quantity vdac               : real := 0.0; 

14  signal     delayedcount : real := 0.0; 

15  signal     count              : real := 0.0; 

16 -- quantity rampedcount : real := 0.0; 
17 begin  

18  vout == vdac + vlow; -- DC Shift 

19  vdac == vrange / 2.0 ** n * delayedcount; -- D2A Conversion 

20  -- vdac == vrange / 2.0 ** n  * rampedcount; 

21  break on delayedcount;  

22  -- break on rampedcount; 

23  -- rampedcount == delayedcount'ramp(trise,tfall);  

24  binary2decimal : process (din) is  

25   variable countvar :  real := 0.0; 
26  begin  

27   countvar := 0.0; 

28   if din'ascending then  

29    for i in din'range loop  

30     if din(i) = '1' then  

31      countvar := countvar + 2.0 ** (din'high - i);                             

32     end if;                         

33    end loop;                     
34   else  

35    for i in din'range loop  

36     if din(i) = '1' then  

37      countvar := countvar + 2.0 ** (i - din'low);                             

38     end if;                         

39    end loop;                   

40   end if; 

41   count <= countvar;             

42  end process binary2decimal; 

43  delay : process (count) is  
44  begin  

45   if domain = quiescent_domain then  

46    delayedcount <= count;             
47   else  

48    delayedcount <= count after td;                     

49   end if;       

50  end process delay; 

51 end machine; 

 



2 as an example of the first adaptation strategy; the 

adaptation module is able to remove the ramping effect on 

the converter’s output (lines number 3, 4, 16, and 23 are 

removed, line 19 substitutes line 20, and line 21 substitutes 

line 22). This effect is part of the representation of the 

model selected from the case library.  

An example of the second adaptation strategy in given in 

Listing 3, where a delay effect was added to a switched 

current cell (lines number 2, 8, 11-18 are added, and line 

19 substitutes line 20). 

To evaluate the output of our expert system, we compared 

its results to those obtained by a human expert in AMS 

behavioral modeling. 

The main difference between the automatically generated 

code and that of a human expert is the separability of 

effects. Each VHDL-AMS statement generated by the CBR 

contribute to one, and only one effect, and then effects are 

glued together by free quantities and signals. A human 

expert on the other hand tends to mix different effects into 

a single statement and thus uses a fewer number of 

quantities and signals in the model’s architecture. A 

portion of the DAC model developed by a human expert is 

given in Listing 4 as an example (equivalent to lines 

number 18, 19, and 43-50 in Listing 2). According to 

ADVance MSTM user manual [21], using intermediate 

quantities does not degrade the simulation performance. 

A quantitative comparison of simulation performance was 

carried out using simulation statistics provided by 

ADVance MS in a typical test case. Comparison results of 

the DAC models are illustrated in Table 1 and those of the 

switched current cell are illustrated in Table 2. The 

purpose of this comparison is to insure that automatically 

generated models are as efficient as those developed by 

human experts. 

Table 1: Simulation performance comparison of the DAC 

models. 

 
Generated 

Model 

Human 

Expert 

Model 

Total CPU time 40 ms 50 ms 

Memory used (in KB) 49,772 49,772 

Number of digital kernel events 54 60 

Accepted analog time steps 340 340 

Rejected analog time steps 8 8 

Table 2: Simulation performance comparison of the switched 

current cell models. 

 
Generated 

Model 

Human 

Expert 

Model 

Total CPU time 40 ms 50 ms 

Memory used (in KB) 49,756 49,756 

Number of digital kernel events 33 33 

Accepted analog time steps 351 225 

Rejected analog time steps 9 0 

The electrical correctness and accuracy of the generated 

models were insured by comparing the output waveforms 

of the generated models against those developed by a 

human expert. Waveforms perfectly coincide.  

6. CONCLUSION 

The presented expert system is capable of generating 

parameterized, linear and non-linear VHDL-AMS 

Listing 3: Automatically generated switched current cell. 

01 entity currentCell is  

02   generic (ctrl_delay_time : time := 10 ns; 

03         iout                   : real  := 0.001); 

04  port (signal   ctrl     : in std_logic; 

05       terminal aout : electrical); 

06 end currentCell; 

07 architecture machine of currentCell is  

08  signal delayed_ctrl : std_logic; 

09  quantity v_out across i_out through aout; 
10 begin  

11  process (ctrl) is  
12  begin  

13   if domain = quiescent_domain then  

14    delayed_ctrl <= ctrl;                 
15   else  

16    delayed_ctrl <= ctrl after ctrl_delay_time;                

17   end if;               

18  end process; 

19  if delayed_ctrl = '1' use   

20  -- if ctrl = '1' use 

21   i_out == iout;             
22  else  

23   i_out == 0.0;         

24  end use; 

25  break on delayed_ctrl; 

26 end machine; 

 

Listing 4: Portion of the DAC model developed by a human 

expert. 

Vout == Vrange/2.0**N*count + Vlow; 



behavioral models for any class of circuits. A couple of 

automatically generated behavioral models were given as 

an example. Qualitative and quantitative assessments of 

these models present an evidence of their expert-quality. A 

bottleneck in the usage model of any CBR system is the 

availability of cases. Our CBR makes use of the hundreds 

of VHDL-AMS models available with ADVance MS. 

These models are laden with a very rich set of AMS 

effects. 

Our CBR cannot generate hierarchal models (models built 

up of another behavioral models). Our future work tackles 

this limitation. We are also working on extending the set 

of adaptation strategies and developing a graphical editor 

which enables the user to directly manipulate the 

conceptual diagram representation. 
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