
A Case-Based Reasoning Approach for the Automatic

Generation of VHDL-AMS Models
Ahmad Al-Kashef

Mentor Graphics

ahmad_al-kashef@mentor.com

Manal M. Zaky
Ain Shams University

manalmourad@yahoo.com

Mohamed Dessouky
Mentor Graphics

mohamed_dessouky@mentor.com

Hassan El-Ghitani
Misr International University
hassan.elghitani@miuegypt.edu.eg

ABSTRACT

Automatic generation of analog and mixed-signal (AMS)

behavioral models from specifications is an important

component of top-down design methodologies. In this

paper, we present an expert system solution to this

challenge. Based on a representation of the model

functionality, our expert system manipulates a library of

previously developed models to synthesize a new model.

Automatically generated VHDL-AMS behavioral models

are shown to be of expert quality.

1. INTRODUCTION

The adoption of top-down design methodologies fueled the

need for the automatic generation of behavioral models

which started as (and still mostly is) a manual

development process.

Roychowdhury [1] lists several broad methodologies for

automated behavioral modeling including algorithmic

methods, symbolic methods, black-box methods (such as

data-mining, neural networks, genetic algorithms and

multi-dimensional tables) and automation of the manual

modeling process. All of these methods, except for the

automation of the manual modeling process, are bottom-up

methods (i.e. they start from a given circuit description,

often a netlist, to develop a behavioral model). A survey of

these methods is given in [2]. In top-down design

methodologies though, model creation precedes circuit

design and circuit specifications are a product of design

space exploration which requires behavioral models.

Attempts to automate the manual modeling process

starting from model specifications (rather than a given

netlist) are relatively fewer compared to bottom-up

approaches. Authors in [3] automated a manual modeling

process for continuous-time Delta-Sigma modulators. An

analog behavioral model synthesizer described in [4]

expresses model behavior in the form of functional

diagrams drawn as an interconnection of symbols. Each

symbol stands for an elementary analog behavior.

Behavioral elements are coded separately and then

combined to generate the model HDL-A code. Two

approaches for the generation of behavioral VHDL models

from descriptions written in natural language are

presented in [5].

The most prevalent approach towards creating behavioral

models in industry though, is manual abstraction [1].

Manual efforts start with an understanding of the circuit

but do not require the circuit netlist to develop an

equivalent model. Manual abstraction (e.g. [6] - [9])

usually results in simulation speedups orders of magnitude

higher than automated efforts (e.g. [10] - [12]). Although

fast-SPICE simulators don’t provide parameterized

models, they achieve speedups similar to those achieved by

automated modeling.

The development of parameterized, AMS behavioral

models for all circuit classes including strong nonlinear

behaviors, with multiple-inputs and multiple-outputs,

which achieve high speed gains and do not require the

circuit netlist as an input, is a manual process reserved to

modeling experts working side-by-side with design teams.

An attempt to automate this development process naturally

lends itself to an expert system solution due to the lack of

an algorithmic solution which meets all these

requirements.

Case-based reasoning (CBR) is an approach to knowledge-

based problem-solving employed in expert systems [13]

that has been commonly used in code understanding and

generation. A survey of CBR techniques for CAD systems

used in design is given in [14], and a review of the

applicability of these techniques to code generation is

given in [15]. A CBR system which generates digital

models is given in [16].

In this paper, we present an architecture for a case-based

reasoner which automates the generation of VHDL-AMS

behavioral models for AMS circuits (Section 2). Section 3

describes the knowledge representation on which our work

is based. Due to the limited space of the paper, we will

focus on how the CBR adapts VHDL-AMS models

(Section 4). Two examples of generated models are then

listed and discussed in Section 5. The whole system is fully

described in [17].

2. CBR ARCHITECTURE

Figure 1: CBR architecture developed for model generation.

Figure 1 illustrates the architecture of the developed CBR

system. The Case Library is a database of VHDL-AMS

models’ representations. Each case represents a single

model. Cases are indexed according to their salient

features (interface and behavior). Using knowledge about

different circuit architectures and levels of abstraction

stored in the Models Taxonomy database, the Specs

Collection Module collects specifications for a behavioral

model through a graphical user interface (GUI). The user

specifies the model’s class (VCO, DAC, ADC, etc.), ports

and their functions (input, output, reference, ground, etc.),

and model behavior along with the associated generics.

Specifications are then passed to the Retrieval Module

which relies on an adaptation-guided retrieval algorithm

[13]. The algorithm is based on heuristic rules expressed

in Prolog predicates and is biased to select cases most

easily adaptable to the current situation. The retrieved case

is compared against the given specifications to determine

the adaptation effort required, and the Adaptation Module

manipulates the retrieved case to synthesize the specified

model. The new model is finally fed back into the CBR to

be added to the Case Library.

The adaptation of VHDL-AMS models is accomplished by

manipulating a Prolog representation of the VHDL-AMS

source obtained by an open source SWI-Prolog Parser [18]

with the help of a set of Prolog rules in the Adaptation

module and the required knowledge for the specified

adaptation as will be explained in detail in the next

section. The modified Prolog representation is finally

transformed back to readable VHDL-AMS source code.

The output of the Prolog Parser also serves as an input to

the Semantics Extraction module which helps the

knowledge engineer augment the syntactic representation

with semantics about the model’s functionality.

We used XPCE, SWI-Prolog’s native GUI library [19] to

implement the GUI, and SWI-Prolog ODBC interface [20]

in the Retrieval module to issue SQL queries to an Access

database.

3. KNOWLEDGE REPRESENTATION

In case-based reasoning, knowledge representation covers

the cases stored in the expert system’s database (case

representation), and the adaptation strategies used to adapt

these cases to fit a new situation. Each case has a semantic

and a syntactic representation. The syntactic representation

is the Prolog parse tree substitute of the VHDL-AMS

source code which enables its manipulation. The rest of

this section deals with the semantic representation.

Semantic representation captures the qualitative

knowledge about a behavioral model. Our representation is

based on the idea that total circuit behavior can be

decomposed into a number of separable behaviors. Each of

these behaviors is called an effect. Effects are classified

into ideal, non-ideal, and auxiliary, only in relation to a

given model. An ideal effect represents the ideal behavior

of the circuit (e.g. amplification in a amplifier). A non-

ideal effect represents a particular non-ideality in the

behavior (e.g. propagation delay in an AND gate) and an

auxiliary effect complements an ideal effect inside the

model, but is not in itself an ideal effect (e.g. binary-to-

decimal conversion in digital-to-analog converters).

Besides effects, an AMS behavioral model is also

represented in terms of some macro-modeling elements,

and the heuristic rules that experts use to glue these effects

and macro-models together inside the architecture of a

model.

This representation is captured into a graphical conceptual

model [13] which is translated into Prolog predicates and

augmented with additional semantics about the model’s

effects, generics, and ports. An example diagram of a

generated digital-to-analog converter (DAC) model

(Section 5) is shown in Figure 2.

The border of the conceptual diagram represents the model

entity, while the model’s behavior (architecture) is

captured inside the border of the diagram. Behavior is

decomposed into effects (rectangular boxes) and macro-

modeling elements (vout and iout). Unipolar digital-to-

analog conversion is the ideal effect. Delay and DC shift

are non-ideal effects, while binary-to-decimal conversion

and extraction of converter resolution are auxiliary effects.

Figure 2: Conceptual diagram of a DAC behavioral model.

Arrows represent VHDL-AMS objects such as signals,

terminals, and quantities declared inside the model

architecture.

Classes of effects are stored in a separate library and

instances of these classes are called in each of the cases

inside the CBR case library. Each effect class consists of a

VHDL-AMS source code template, VHDL-AMS objects

used inside the template, and effect-specific adaptation

rules to enable the integration of this effect inside any

behavioral model. An example of a delay effect class is

given in Listing 1.

4. ADAPTATION

We implemented four basic adaptation strategies:

Removing an effect, adding an effect, output current to

output voltage transformation and vice versa, and single-

ended operation to differential operation transformation

and vice versa.

The conceptual diagram represented in Figure 2 intuitively

exposes the basic procedures used to implement these

strategies.

4.1 Remove an Effect

The simplified pseudo-code of the algorithm used to

remove an effect from a given model is:

1- Remove the code template corresponding to the

effect to be removed from the model.

2- Remove associated generics if they are not also

associated with other effects.

3- Depending on the adaptation rules of the effects

preceding and following the effect to be removed,

replace the output object of the effect to be

removed with its input object, or vice versa, and

remove the declaration of the substituted object.

4.2 Add an Effect

To add an effect to a given model, the following steps are

executed:

1- Retrieve the effect to be added from the effects’

classes library.

2- Determine an insertion point by consulting the

user about the right sequence of effects.

3- Add generics associated with the new effect class

to the model’s generic list.

4- Declare the output object of the effect to be added.

5- Add the effect code template to the model’s

architecture.

6- In the added effect code template, replace the

input object with the output object of the effect

preceding the one added.

7- In the code template of the effect following the

added one, replace the input object with the object

declared in step 4.

4.3 Output Current to Output Voltage

Transformation and Vice Versa

Figure 3 illustrates the idea behind the current-to-voltage

transformation. The opposite is similar. AMS behavioral

Listing 1: Delay effect class.

%effect_class(ClassName,GenericList,Inputs,Outputs,IntermediateVars

,

% PrologCode,RulesForAddingEffect,RulesForRemovingEffect).
effect_class(delay,[Td],[In1],[Out1],[],code,AddRules,RemoveRules):-

code=vhdl_process(_,_,null,[In1],[],

[vhdl_if(null, null, rel(=, vhdl_call(domain, []),

vhdl_call(quiescent_domain, [])),

[signal(null, Out1, null, null, [event(vhdl_call(In1, []), null)])],

[signal(null, Out1, null, null, [event(vhdl_call(In1, []),

vhdl_call(Td, []))])])]),

AddRules=[concat_atom([In1,'_',delay,'_',time],Td),

concat_atom([delayed,'_',In1],Out1),

generics_types([Td],[real]),

var_type([Out1],[type(In1)]),

rename(In1,Out1)],

RemoveRules=[rename_variable(Out1,In1)].

models usually have an output stage whose macro-model

representation is that of a current (voltage) source.

Figure 3: Conceptual diagram of a current source output

stage (a) and its equivalent voltage source output stage (b).

This stage can be thought of as an effect whose inputs are

the values of the current (voltage) source and the output

resistance and capacitance, and whose output is the output

terminal. The values of the current (voltage) source of the

output stage would be the result of some computations

performed in the model according to its functionality; the

output of a previous effect.

This adaptation strategy substitutes a current (voltage)

output stage effect with an equivalent voltage (current)

output stage effect, and multiplies the input of the effect by

a gain quantity which is added to the model’s list of

generics.

4.4 Single-ended Operation to Differential

Transformation and Vice Versa

Figure 4: Single-ended (a) to differential (b) transformation.

This adaptation strategy builds on the notion explained in

the above section; an output stage of an AMS behavioral

model can be treated as an effect. Figure 4 illustrates how

a single-ended output stage is transformed into a

differential output stage. The opposite is similar. To make

the transformation from single-ended to differential

operation and vice versa the adaptation module substitutes

stages the same way it substitutes effects.

The retrieval and the adaptation algorithms enable the

generation of models whose types are not represented in

the case library. For example, the case library may contain

an AND gate model with a propagation delay non-ideality,

but lacks a delay element model. Upon the user’s request

to generate a delay element model, the CBR is capable of

reusing the non-ideal delay effect implemented in the

AND gate inside the delay element (as an ideal effect).

5. EXAMPLE

An automatically generated DAC model is given in Listing

Listing 2: Automatically generated DAC model.

01 entity d2a is

02 generic (td : time := 1.0 ns;

03 -- trise : real := 0.0e-9;

04 -- tfall : real := 0.0e-9;

05 vrange : real := 5.0;

06 vlow : real := 0.0);

07 port (terminal aout : electrical;

08 signal din : in std_logic_vector);

09 constant n : integer := din'length; -- Extract Converter Resolution

10 end d2a;

11 architecture machine of d2a is

12 quantity vout across iout through aout;

13 quantity vdac : real := 0.0;

14 signal delayedcount : real := 0.0;

15 signal count : real := 0.0;

16 -- quantity rampedcount : real := 0.0;
17 begin

18 vout == vdac + vlow; -- DC Shift

19 vdac == vrange / 2.0 ** n * delayedcount; -- D2A Conversion

20 -- vdac == vrange / 2.0 ** n * rampedcount;

21 break on delayedcount;

22 -- break on rampedcount;

23 -- rampedcount == delayedcount'ramp(trise,tfall);

24 binary2decimal : process (din) is

25 variable countvar : real := 0.0;
26 begin

27 countvar := 0.0;

28 if din'ascending then

29 for i in din'range loop

30 if din(i) = '1' then

31 countvar := countvar + 2.0 ** (din'high - i);

32 end if;

33 end loop;
34 else

35 for i in din'range loop

36 if din(i) = '1' then

37 countvar := countvar + 2.0 ** (i - din'low);

38 end if;

39 end loop;

40 end if;

41 count <= countvar;

42 end process binary2decimal;

43 delay : process (count) is
44 begin

45 if domain = quiescent_domain then

46 delayedcount <= count;
47 else

48 delayedcount <= count after td;

49 end if;

50 end process delay;

51 end machine;

2 as an example of the first adaptation strategy; the

adaptation module is able to remove the ramping effect on

the converter’s output (lines number 3, 4, 16, and 23 are

removed, line 19 substitutes line 20, and line 21 substitutes

line 22). This effect is part of the representation of the

model selected from the case library.

An example of the second adaptation strategy in given in

Listing 3, where a delay effect was added to a switched

current cell (lines number 2, 8, 11-18 are added, and line

19 substitutes line 20).

To evaluate the output of our expert system, we compared

its results to those obtained by a human expert in AMS

behavioral modeling.

The main difference between the automatically generated

code and that of a human expert is the separability of

effects. Each VHDL-AMS statement generated by the CBR

contribute to one, and only one effect, and then effects are

glued together by free quantities and signals. A human

expert on the other hand tends to mix different effects into

a single statement and thus uses a fewer number of

quantities and signals in the model’s architecture. A

portion of the DAC model developed by a human expert is

given in Listing 4 as an example (equivalent to lines

number 18, 19, and 43-50 in Listing 2). According to

ADVance MSTM user manual [21], using intermediate

quantities does not degrade the simulation performance.

A quantitative comparison of simulation performance was

carried out using simulation statistics provided by

ADVance MS in a typical test case. Comparison results of

the DAC models are illustrated in Table 1 and those of the

switched current cell are illustrated in Table 2. The

purpose of this comparison is to insure that automatically

generated models are as efficient as those developed by

human experts.

Table 1: Simulation performance comparison of the DAC

models.

Generated

Model

Human

Expert

Model

Total CPU time 40 ms 50 ms

Memory used (in KB) 49,772 49,772

Number of digital kernel events 54 60

Accepted analog time steps 340 340

Rejected analog time steps 8 8

Table 2: Simulation performance comparison of the switched

current cell models.

Generated

Model

Human

Expert

Model

Total CPU time 40 ms 50 ms

Memory used (in KB) 49,756 49,756

Number of digital kernel events 33 33

Accepted analog time steps 351 225

Rejected analog time steps 9 0

The electrical correctness and accuracy of the generated

models were insured by comparing the output waveforms

of the generated models against those developed by a

human expert. Waveforms perfectly coincide.

6. CONCLUSION

The presented expert system is capable of generating

parameterized, linear and non-linear VHDL-AMS

Listing 3: Automatically generated switched current cell.

01 entity currentCell is

02 generic (ctrl_delay_time : time := 10 ns;

03 iout : real := 0.001);

04 port (signal ctrl : in std_logic;

05 terminal aout : electrical);

06 end currentCell;

07 architecture machine of currentCell is

08 signal delayed_ctrl : std_logic;

09 quantity v_out across i_out through aout;
10 begin

11 process (ctrl) is
12 begin

13 if domain = quiescent_domain then

14 delayed_ctrl <= ctrl;
15 else

16 delayed_ctrl <= ctrl after ctrl_delay_time;

17 end if;

18 end process;

19 if delayed_ctrl = '1' use

20 -- if ctrl = '1' use

21 i_out == iout;
22 else

23 i_out == 0.0;

24 end use;

25 break on delayed_ctrl;

26 end machine;

Listing 4: Portion of the DAC model developed by a human

expert.

Vout == Vrange/2.0**N*count + Vlow;

behavioral models for any class of circuits. A couple of

automatically generated behavioral models were given as

an example. Qualitative and quantitative assessments of

these models present an evidence of their expert-quality. A

bottleneck in the usage model of any CBR system is the

availability of cases. Our CBR makes use of the hundreds

of VHDL-AMS models available with ADVance MS.

These models are laden with a very rich set of AMS

effects.

Our CBR cannot generate hierarchal models (models built

up of another behavioral models). Our future work tackles

this limitation. We are also working on extending the set

of adaptation strategies and developing a graphical editor

which enables the user to directly manipulate the

conceptual diagram representation.

REFERENCES

[1] Jaijeet Roychowdhury, “Automated macromodel generation

for electronic systems,” in Proceedings of the 2003

International Workshop on Behavioral Modeling and

Simulation, 2003, pp. 11-16.

[2] H. A. Mantooth, L. Ren, X. Huang, Y. Feng, and W. Zheng,

“A survey of bottom-up behavioral modeling methods for

analog circuits,” in Proceedings of the 2003 International

Symposium on Circuits and Systems, 2003, pp. III-910- III-

913 vol.3.

[3] K. Francken, M. Vogels, E. Martens, G. Gielen, “A

behavioral simulation tool for continuous-time delta sigma

modulators,” in IEEE/ACM International Conference on

Computer Aided Design, 2002, pp. 234- 239.

[4] V. Moser, H.-P. Amann, and F. Pellandini, “Behavioural

modelling of analogue Systems with ABSynth,” in Analog

and Mixed-Signal Hardware Description Languages, A.

Vachoux, J.-M. Bergé, O. Levia, and J. Rouillard, Kluwer

Academic Publishers, 1997, pp. 93-100.

[5] W. R. Cyre, J. Armstrong, M. Manek-Honcharik, and A. J.

Honcharik, “Generating VHDL models from natural

language descriptions,” in Proceedings of the Conference on

European Design Automation, 1994, pp. 474-479.

[6] D. El-Ebiary, Maged Fikry, Mohamed Dessouky, and

Hassan Ghitani, “Average behavioral modeling technique

for switched-capacitor voltage converters,” in Proceedings

of the 2006 IEEE International Behavioral Modeling and

Simulation Workshop, 2006, pp. 109-114.

[7] D. El-Ebiary, Mohamed Dessouky, and Hassan Ghitani,

“Behavioral modeling of a charge pump voltage converter

for SoC functional verification purposes,” in Proceedings of

the 2007 IEEE International Behavioral Modeling and

Simulation Workshop, 2007, pp. 84-89.

[8] N. H. Saada, R. S. Guindi, and A. E. Salama, “A new

approach for modeling the nonlinearity of analog to digital

converters based on spectral components,” in Proceedings

of the 2006 IEEE International Behavioral Modeling and

Simulation Workshop, 2006, pp. 120-125.

[9] Mentor Graphics, Appl. Note 10201.

[10] L. Nathke, V. Burkhay, L. Hedrich, and E. Barke,

“Hierarchical automatic behavioral model generation of

nonlinear analog circuits based on nonlinear symbolic

techniques,” in Proceedings of Design, Automation and Test

in Europe Conference and Exhibition, 2004, pp. 442- 447

Vol.1.

[11] Yasunori Miyahara, John Moore, Taichi Ikedo and Lars

Andersen, “Automatic behavioral model generation suite for

mobile phone system analysis,” Agilent Technical

Publications, 2003.

[12] Carsten Borchers, Lars Hedrich, and Erich Barke,

"Equation-based behavioral model generation for nonlinear

analog circuits," in 33rd Annual Conference on Design

Automation, 1996, pp. 237-240.

[13] George F Luger and William A Stubblefield, Artificial

Intelligence: Structures and strategies for complex problem

solving, 3rd ed. Boston: Addison Wesley Longman, 1998.

[14] B. Trousse, and W. Visser, “Use of case-based reasoning

techniques for intelligent computer-aided-design systems,”

in Proceedings of the International Conference on Systems,

Man, and Cybernetics, 1993, pp. 513-518 vol.3.

[15] Broad A. and Filer N., “Applying case-based reasoning to

code understanding and generation,” in Proceedings of the

Fourth United Kingdom Case-Based Reasoning Workshop,

1999, pp. 35-48.

[16] P. Gomes and C. Bento, “A case similarity metric for

software reuse and design,” in Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 2001, pp.

21-35.

[17] Ahmad Al-Kashef, “A case-based reasoning approach for

the knowledge representation of VHDL-AMS behavioral

models,” M.S. thesis, Ain Shams University, Cairo, Egypt,

2008.

[18] VHDL-1076.1 Parser/Pretty-Printer in SWI-Prolog,

http://www.cs.wright.edu/~tkprasad/VHDL-

AMS/README.html.

[19] XPCE: the SWI-Prolog native GUI library, http://www.swi-

prolog.org/packages/xpce/.

[20] SWI-Prolog ODBC Interface, http://www.swi-

prolog.org/packages/odbc.html.

[21] ADVance MS user Manual, Mentor Graphics, 2008.

