## Semantics for Rollback-Based Continuous/Discrete Simulation

### Luiza Gheorghe, Gabriela Nicolescu, Hanifa Boucheneb

Ecole Polytechnique de Montréal Tel: (514) 340 4711 ext 5434

Fax: (514) 340 3240

Email: gabriela.nicolescu@polymtl.ca



### Continuous/Discrete Systems

- Applications to various domains
  - Defense, medical, communications, automotive, ...
- Examples of Continuous/Discrete Systems
  - MEMS, real-time controllers, mixed-signal systems ...
- Main characteristics
  - Complexity, heterogeneity
- Main design challenges
  - Global specification and validation



## Continuous/Discrete Systems Design

- Collaboration between different teams
- Incremental refinements through different abstraction levels with specific execution models
- Validation requires joint execution of heterogeneous execution models
  - Co-Simulation Technique



## Challenges for Continuous/Discrete Co-Simulation



- Defining new tools facilitating cooperation between different teams
  - Enabling easy specification, automatic generation for simulation interfaces
  - Taking into account implementation choices
  - Exploiting powerful existing tools (Simulink, SystemC, ...)
  - Based on a single well defined formalism for domain interaction

BMAS 2008

### Contributions

- Definition of the semantics for the continuous and the discrete co-simulation interfaces
  - The interfaces representation using DEVS models [University of Arizona] and timed automata
- Formal verification of the simulation interfaces
  - Study for rollback-based continuous/discrete simulation models

#### **Outline**

- Global Simulation for Continuous/Discrete Systems
- Design Methodology for Continuous/Discrete Systems Co-Simulation Tools
- Semantics for Rollback-based Continuous/Discrete Co-Simulation
- Formal verification for Co-Simulation Interfaces
- Conclusion

### Design Methodology for Continuous/Discrete Simulation Tools





### Design Methodology for Continuous/Discrete Simulation Tools





### Design Methodology for Continuous/Discrete Simulation Tools



### Design Methodology for Continuous/Discrete Simulation Tools



### Design Methodology for Continuous/Discrete Simulation Tools



#### **Outline**

- Global Simulation for Continuous/Discrete Systems
- Design Methodology for Continuous/Discrete Systems Co-Simulation Tools
- Semantics for Rollback-based Continuous/Discrete Co-Simulation
- Formal verification for Co-Simulation Interfaces
- Conclusion

**BMAS 2008** 

## Continuous/Discrete Systems - Global Simulation -

| Concept<br>Model | Time                   | Communication means | Processes activation rules |
|------------------|------------------------|---------------------|----------------------------|
| Discrete         | Advances discretely    | Set of events       | Processes are              |
|                  | (constant intervals)   |                     | sensitive to events        |
| Continuous       | It advances by         | Piecewise-          | Processes are              |
|                  | integration steps (IS) | Continuous signals  | executed at each IS        |

- Events exchanged between the continuous and the discrete models
  - State events
  - Sampling events
  - Update signal events



**BMAS 2008** 

## Continuous/Discrete Systems - Global Simulation -



# Rollback-Based Continuous/Discrete Synchronization Model



### Synchronization Operational Semantics

- DEVS (Discrete Event Systems specification) and DESS (Differential Equation Systems Specification) formalisms
  - Set of rules Premise respecting the actions of Conclusion
    - Discrete model
    - Continuous model
    - Discrete model interface
    - Continuous model interface
- Timed Automata
  - Classical finite state automata with clock variables and logical formulas on the clocks (temporal constraints)



### Synchronization Operational Semantics using DEVS



$$\frac{synch = 1 \land flag = 0 \land q = \delta_{ext}(q)}{q \xrightarrow{(DataFromBus, t_a(s_{dk}))?; synch := 0}} q$$

# Synchronization Operational Semantics using DEVS



Set of rules for the overall synchronization model

Based on timed-automata – use of UPPAAL tool



Based on timed-automata – use of UPPAAL tool





- Global Verification requires
   Timed Automata for
  - Discrete Simulator
  - Continuous Simulator
  - The Continuous
     Simulator Interface
  - The Discrete Simulator Interface

- Properties verified
  - Absence of deadlock
  - Timing synchronization
  - Detection of all state events
  - No false state events
  - Respect of causality principle



#### Conclusions

- Challenges for global validation of continuous/discrete systems
  - Definition of global execution models
  - Automatic generation of simulation interfaces
- Operational semantics definition and formal representation and verification
  - Key step for generalization and library definition

**BMAS 2008**