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ABSTRACT
This paper describes  a modeling extension to Verilog called 
"Switch-Level Analog."  It is inspired by the switch-level transistor 
modeling facility of Verilog, but extends the value domain from 
Logic to Reals and is based  on linear relationships between the 
currents of branches and the voltages of nodes, rather than the 
charge relationships of nodes of earlier switch-level models.  This 
capability allows the modeling of many types of modern circuit 
blocks that exploit the current-source (saturation mode) and 
resistive (linear mode) properties of transistors.  The model is 
implemented as a PLI library.  Modeling examples and 
performance data are presented.

1 INTRODUCTION

Verilog is  the workhorse language for the modeling of digital 
designs.  In recent years, more and more "mostly digital" designs 
include some amount  of non-digital circuitry.  Unfortunately, the 
ability of Verilog to model non-digital phenomena is  severely 
limited by its inability to transmit non-digital  values over Verilog 
wires.

This paper describes a PLI (Programming Language Interface) 
library that adds  an event-driven analog modeling facility to 
Verilog.  With the library, Verilog wires can name nodes in an 
electrical network.  Electrical network primitives are provided 
allowing the modeling  of register-controlled variable sources, 
resistors, dependent sources and  switches.  This repertoire is 
sufficient to model many types of analog architectures that occur in 
real chip designs.  With such a modeling capability, the verification 
of the chip-level digital and "coarse" analog architecture can 
proceed before transistor-level implementations are available.

The model presented here is event-driven: it responds to changes in 
Verilog real-valued registers and delivers value-change events back 
through the Verilog scheduler.  The model is  derived from the 
existing switch-level  model of Verilog, which is explicitly based on 
the notion of connected-component subnetworks [2,10].  Value 
changes on the inputs to a subnetwork induce the evaluation of the 
steady-state of a subnetwork.

The subnetwork model extends  to unknown values  such that if any 
inputs are unknown the value of an entire subnetwork is simply 
unknown.  This formulation gives a meaningful  basis for the 
analysis of "X"-values in some types of analog systems.

1.1 A PLI Library for Linear Systems
We have extended the techniques of [3,11] and implemented  a PLI 
library for modeling networks  of variable linear circuit elements.  In 
previous work [6,7] we reported on verification issues involving 
mixed-signal integration, and showed how to use the library as a 
modeling tool.  In this paper, we focus on its implementation and 
performance.

Our implementation uses the VPI programming interface [9]. The 
first level of the library defines system functions for modeling 

circuit devices including resistors, current  sources, voltage sources 
and switches.  Verilog registers, whose values may be updated 
dynamically, assign time-varying values to these elements.

In this model, an  electrical node is named by a Verilog wire.  A wire 
describes  one endpoint  of a multi-terminal  net in Verilog.  Using 
PLI functions to trace connectivity, we define all of the aliases of 
the multi-terminal net to refer to  the same electrical node.  In  this 
manner, wiring hierarchy in the Verilog database connects  electrical 
nodes in the expected way.  This is the same technique used by [3].

A variable resistor is instantiated with the executable call to 
"$resistor."  An example appears in Figure 1.  Wires  w1 and w2 
identify two electrical nodes, and the call to "$resistor" creates an 
electrical circuit  element across them.  The value of the resistor is 
dynamically controlled by "rval," which is called the "control 
register" of the resistor.  In the example, the initial value of "rval" is 
set before instantiating  the resistor.  Subsequent assignments to the 
value of "rval" during simulation change the value of the resistor, 
which changes the steady-state of its electrical network.

Figure 1. Resistor Instantiation

Figure 2. Current Source Instantiation



Figure 3. Voltage Source Instantiation

A variable current source is instantiated as shown in Figure 2.  In 
this example, the Verilog  register "cval" is the control  register of the 
current source.  The amount of current flowing through the current 
source may be dynamically changed by re-assigning the value of 
register "cval."

A variable voltage source may likewise be instantiated as shown in 
Figure 3.  A voltage source has one control register and also has a 
"result register" which is used to  report  the amount  of current 
flowing through the voltage source in the steady-state solution of 
the subnetwork.  In the example, the control  register is "vval" and 
the result register is "ires."

Figure 4. Switch Instantiation

Figure 5. Voltage Probe Instantiation

An ideal electrical switch is instantiated  as illustrated in Figure 4.  
The control register of a switch is a Logic value, and selects 
whether the switch is ON (1) or OFF (0).  An ideal switch has zero 
resistance (a short circuit) when ON and zero admittance (an open 
circuit) when OFF [1]. 

A primitive is also provided for observing a voltage on an  electrical 
node and reporting it in a Verilog register.  An example of the use of 
a voltage probe is shown in Figure 9.  In this fragment, "volts" is a 
result register.  Whenever the steady-state operating point  of the 
voltage on the electrical node named by "w1" changes due to  a 
change in the value of an electrical element in its  subnetwork, the 
value of "volts" will be changed to reflect the new value.

2 IMPLEMENTATION NOTES

A complete description of the implementation of the library is not 
possible in this space.  Rather, we highlight some of the important 
points one would need to know to implement the library  presented 
here.

2.1 An Overview of Data-Structure Creation
The Verilog PLI provides hooks for registering callbacks at  various 
times in the parsing of the netlist and the running of the simulator.  
Each device instantiation corresponds to a so-called user-defined 
"system function."  The callback points we used were "compile", 
"start_of_sim " and "calltf.”

The compile callback is called for each system function during 
parsing of the netlist.  Because the compile phase of Verilog 
execution may occur in a process separate from the simulation run-
time, one cannot reliably allocate memory (or otherwise build a 
data-structure) during this phase.  Thus, during this  phase we check 
the number of arguments for each device and confirm that they are 
the correct type.  We are, however, allowed to register selected 
callbacks  for each system function, and it is here that we register the 
“start_of_sim” callback for each device.

The "start_of_sim" callback is called at simulation time 0, and PLI 
code is  allowed full use of the memory allocation system.  For each 
circuit device, we build a device data structure, and record 
references to the Verilog objects describing the wires and registers 
associated with each device.  It is also during this phase that  we 
resolve wire name aliases to electrical nodes (see the next section).

The "calltf" callback corresponds to the invocation of the system 
function corresponding to  the instantiation of the circuit device in 
an "initial" block.  It  is here that  we chose to perform global 
operations  that need to occur over the collection of all  devices.  The 
following steps are performed here:

• Partitioning:

  The electrical network (now described in terms of devices and 
nodes) is  partitioned into subnetworks.  A connected components 
algorithm is run.  The rules defining the partitioning are the 
following: 

• An electrical element can be in only one subnetwork.
• Two electrical elements are in the same subnetwork if they 

share a node.

• Build Matrices:

  The devices provided include common linear devices and a special 
device: the switch.  The structure of the matrix is determined here, 
and memory is allocated.  Initial values from the control registers 
provide initial values for the stamp associated with each device.

• Schedule control register callbacks:

  For each control register, a value-change callback is registered 
with the Verilog simulator.  A control  register value-change results 



in the subnetwork being marked for re-evaluation (system solution) 
at the end of the current time step.  After solution, the result 
registers  associated with each subnetwork are updated.  This event 
causes value changes to propagate through the system to logic, and 
other electrical subnetworks.

2.2 Using Verilog Wires to Name Circuit Nodes
We adopt the technique of [3] to use Verilog wires to name 
electrical nodes.  In our system, a reference to a wire, w1, is 
translated into a list of the string-valued Verilog path names of all of 
its aliases in the netlist.  (Finding these aliases  is  performed once for 
each wire and requires a connected-components traversal of the nets 
and ports in the database.)  Each of these names becomes an entry 
in a global hash table that  maps path  names to an electrical node 
object.

During instantiation of the electrical  devices, the pathname of each 
wire is first  looked up in the hash table.  If the name is there, the 
corresponding node object is retrieved directly.  If it  is not, all  of the 
aliases of that wire are added to the hash table and a node object is 
created.  The process is performed at the beginning of simulation 
only.  During simulation, the node objects are used directly, and the 
hash table is no longer needed.

2.3 Global Supplies, Implicit Sources, and GND
A facility is defined to identify global supplies and implicit sources.  
The datum node, "top.GND" is  a special node defined in  the 
database.  During the partitioning process, device terminals attached 
to this node and its aliases are ignored.  Thus, two subnetworks 
connected through GND remain separate.

A similar facility has been defined for global supplies and implicit 
sources.  An implicit source, like "top.VDD" is a wire that is 
defined in the top level of the database.  A configuration file gives 
its voltage value.  Wires connected to implicit sources are ignored in 
the partitioning process, similar to GND.  A reference to  an implicit 
source in a subnetwork causes the automatic instantiation of a 
source device in that subnetwork.

2.4 Matrix Stamps
For each subnetwork, a matrix formulation of the DC steady-state 
of the subnetwork system is formulated at simulation time 0, using 
the initial  values of the control registers.  We chose to adopt the 
modified nodal  analysis formulation described in [5].  The 
introduction of the stamps for each linear device (source, resistor, 
op-amp or dependent source) is performed as described there.

Figure 6. Switch Definition

The stamp for the switch, is novel, but has been reported elsewhere 
[4].  Figure 6 defines  the quantities associated with a switch.  A 
switch connected to  nodes j  and k, introduces one of two linear 
constraints into the system describing the steady-state value of the 

subnetwork.  If the switch is open, the switch is a zero-valued 
current source, introducing the constraint Ijk = 0.  If the switch is 
closed, the switch is a zero-valued voltage source, introducing the 
constraint Vj-Vk = 0.

For each switch S, we introduce a new independent variable Xi: the 
branch current  through the switch.  The row z, corresponding to 
variable Xi has the following form as shown in Figure 7, depending 
on the value of s.

Figure 7. Switch Matrix Stamps

Thus, for the open switch, the stamp describes the constraint that 
the branch-current must be zero, and that the switch introduces  no 
constraint  between the node voltages of the switch.  For a closed 
switch, it describes the constraint  that the node voltages of the 
switch must sum to zero, but that the switch introduces no 
constraint on the branch current through the switch.

In our implementation, the system is re-solved each time a control 
register changes by performing an entire LU factorization and 
solve.  In [4], the authors describe an iterative approach for 
handling switch transitions.  We have not  experimented with that 
formulation.

2.5 Efficient Update of Matrix Stamps
The update of the steady-state values of a subnetwork is initiated by 
a value change on a control register.  To ensure that  only the stamp 
values that need to  be changed are actually changed, a map from 
control registers to stamp elements is maintained.  We handle the 
updates for linear elements and switches differently.

For the linear elements, each entry  in the matrix corresponding to 
the element's stamp is potentially a linear combination of 
contributions from other elements.  Thus, it is possible to adjust the 
stamp by the change in magnitude of the control register and 
maintain the correct  linear combination of contributions of related 
elements without also visiting their control registers.

A change in a switch value requires only modifying the three 
elements in its row to change its constraint from a zero-valued 
current source to a zero-valued voltage source.

2.6 The Simulation Algorithm
A sketch of the event-driven simulation model is described as 
follows. At simulation time zero, the steady-state of each 
subnetwork is computed using the initial values  of the control 
registers.  When a real-valued control register posts a value-change 
event, its attached subnetwork is scheduled for re-evaluation at the 
current time step. Re-evaluation consists of adjusting the stamps 



related to changed values and recomputing the steady state.  The 
result registers corresponding to watched branch currents  and node 
voltages are then posted with new values.

Unknown (X) values are handled in the following way.  If any 
inputs to a subnetwork are unknown, then the entire subnetwork is 
marked as unknown, and unknown values are propagated to all of 
its outputs. This is similar to the way in which X values  propagate 
in Boolean switch-level networks in Verilog.

3 MODELING

The SLA (Switch-Level Analog) library adds two key capabilities to 
Verilog useful for the modeling of mixed analog/digital systems.  
They are:

1.The ability to send real values along wires,

2.A resolution function for these wires based on the 
solution of KCL for linear networks having flows and 
potentials.

One way to use the library is to model the Thevenin  or Norton 
equivalents of drivers and loads on the periphery of modules, and to 
do the bulk of behavioral modeling using Verilog behavioral code.  
This has performance advantages, as  most  of the design is modeled 
in plain old Verilog and only subnetworks connecting modules are 
modeled using linear constructs.    (Voltage sources, current sources 
and resistors are necessary to  model  Thevenin and Norton 
equivalents.  Switches  help model circuits  whose logical topology 
changes as  a result of digital control.) Figure 8 illustrates the 
general idea.

Figure 8. Modeling of Drivers and Loads

A module with  digitally controlled analog drivers is modeled using 
SLA components for its output  drivers, here labeled with a “D.”  
Another module observes  these drivers with its  loads, here labeled 
with an “L.”  The hierarchy of the design wires together the drivers 
and loads  as shown.  Each connected component of SLA devices 
will form its  own subnetwork.  Each subnetwork will be evaluated 
when the control  values of the drivers change.  Small subnetworks 
are encouraged as they can be solved quickly.

Because each subnetwork is separate, the evaluation schedule of 
each may proceed on its own clock.  For us, this  is an important 
performance consideration, because each driver normally operates 
on its own clock phase.  Without partitioning, a change in  any 
control value would cause the re-evaluation of all analog values in 
the entire design.

3.1 Modeling a Differential Current-Steering 
Output Driver with Programmable Swing

Equalization (or pre-emphasis) is a technique used in an output 
driver to compensate for data losses and reflections on a noisy 
channel [12].  Such reflections  cause interference between adjacent 
bit-times, which is  called inter-symbol interference (ISI).  In the 
frequency domain, equalization reduces the low-frequency 
components  of the transmitted signal as  appropriate for the 
transmission medium.

A Differential Current-Steering Output Driver with Equalization 
(DCSODwE) modulates the magnitudes of the bits transmitted on 
the channel to  manage the frequency components of the signal.  
Rather than transmit one of only two voltage levels, representing a 
logical "0" and a logical "1", the DCSODwE implements  a 
recurrence equation, where the voltage value produced at each bit 
time is a weighted sum of the data bits before (and possibly after) 
the current bit, xi.  (Bit xi is called the cursor.)  Equation 1 defines 
such a recurrence.

(Eq 1)  Vi = a0 xI + a1 xi-1 + a2 xi-2

The output driver with equalization builds on  a simpler structure: a 
differential output driver with programmable swing.  This section 
describes  the simple driver.  A following section uses the 
components  of the simple driver to assemble the output driver with 
equalization.

Figure 9. Differential Output Driver

The architecture of a non-equalizing differential current-steering 
output driver (DCSOD) (including its termination components) is 
shown in Figure 9.  The current source produces a current called 
iSINK that passes through one of two switches.  The bit stream 
(value "bit") and its complement (value "!bit") open and close the 
switches, which are implemented as appropriately biased 
transistors.  The termination voltage, vTERM and the termination 
pullup resistors reside outside of the driver, on the far end of the 
channel.  Because the current is always flowing through one of the 
legs, this architecture is called "current-steering."



When the driver is transmitting a logical "1", the switch controlled 
by "bit" is closed and vp is pulled down to
   VLOW = VTERM - (RTERM * iSINK).
The switch controlled by the complement of "bit" remains open, 
and vn floats high to
   VHIGH = VTERM.

Conversely, if the driver is transmitting a logical "0", then vn is 
pulled down and vp floats high.  (In use, the signals vp and vn are 
routed as  differential  signals to provide noise immunity in the 
electrical environment in which the PHY is operating.)

Many modern PHYs provide a means to tune the magnitude of the 
current, iSINK.  To do this  digitally, a component called  an IDAC is 
used.  The IDAC is a form of digital-to-analog converter that 
produces a current determined by a digital control value.

An example Verilog definition for the IDAC of the output driver 
appears in Figure 10.  The call to  the PLI function "$csrc" 
instantiates the variable circuit element.  The body of the "always" 
block implements the simulation behavior of the IDAC, changing 
the value of the current in response to a change in a digital input.

Figure 10. IDAC Behavioral Model Code Listing

3.2 Output Driver with Equalization
The addition of the equalization capability adds multiple stages to 
the output driver.  The architecture of a three-stage DCSODwE 
(Differential Current-Steering Output Driver with  Equalization) is 
shown in Figure 11.  Here, banks of the simple output driver are 
ganged together, each contributing to the pulldown swing of the 
differential outputs.  The flip-flops are used to  produce the bit 
stream xi, xi-1 and xi-2; these are normal digital components.  The 
current source magnitude of each stage is  programmable through 
the values of ival0, ival1 and ival2.  This architecture implements 
the following mixed-signal recurrences.

(Eq 2)  vpi = VTERM – (ival0 xi + ival1 xi-1 ival2 xi-2 )

 and

(Eq 3)  vni = VTERM – (ival0 !xi + ival1 !xi-1 ival2 !xi-2 )

4 EXPERIMENTAL RESULTS

We modeled the output drivers of a testchip PHY using the 
electrical elements shown here, and modified an existing purely-
digital testbench to one that checked the voltage-based recurrence 
values of Equation 2 on pin "vp".  Our testbench wrote to the 
registers  controlling  the coefficient values (idac0, idac1 and idac2) 
and generated a data stream.

Figure 11. Three-Stage Output Driver with Equalization

Figure 12 shows the resulting  piecewise-constant waveforms from 
such a system.  The signal  at the top shows the digital-only output 
of the pre-existing testbench.  The second signal is the transmitted 
"analog" value, and the third is the analog signal as sampled by a 
receive clock.  The fourth signal is the "expect" value as given by 
the definition recurrence.  The fifth signal is  the numerical 
difference between the sampled and the expect  value, which 
remains zero (within a small  floating point tolerance) through the 
course of the simulation, indicating no error.

Figure 12. Waveform Capture from Good System



4.1 Performance
We measured the computational overhead of our approach.  Each 
electrical subnetwork should require roughly one matrix inversion 
to evaluate its  steady state, and  we were interested in how much 
CPU time this would cost.  The other main use of time is PLI (VPI) 
overhead.

As a baseline, the PHY system without  any analog modeling 
required 251 CPU seconds to run a complete test.  The full system 
has a three stage output driver, but  we also wanted  to observe the 
performance of systems with simpler output drivers and compare 
the results.  We created systems with  one, two, and three-stage 
output drivers and measured the CPU time used using both dense 
and sparse matrix solvers.  Our dense matrix solver is a 
straightforward LU decomposition with full pivoting.  For our 
sparse matrix solver we used Meschach [8].

Table 1 gives information about these four configurations, including 
the number of electrical devices, the order of the matrices 
generated, the number of digital  events (toggles) and the number of 
calls to the matrix solve routines.

Figure 13 presents simulation time data collected for the three 
configurations as a graph, with the sparse and dense solvers 
compared side by side for each configuration.  We measured the 
total simulation time, and the CPU time used by the numerical 
matrix inversion.  The rest of the time (minus the baseline) was 
lumped into a category called  "Other."  Significant uses  of time in 
this category are PLI overhead, and for the sparse case, the lookup 
of matrix elements by a search function on their indices.

For the full three-stage output driver, using the sparse solver, the 
total simulation time rose to 448 seconds.  It is interesting that only 
64 seconds of this time was  spent inverting the matrix.  The other 
133 seconds is dedicated to PLI interfacing, and searching the 
matrix for entries.  For this same configuration, the dense solver 
devoted 86 seconds to overhead;  this amount is all PLI interfacing 
time, since the matrix entry time update is insignificant.

It is interesting to compare the dense implementation  for the 
extremely small subnetwork resulting from a single stage output 
driver.  For this case, the total simulation time is less than that for 
the sparse case.  Notably the "other" time is  much smaller, because 
the matrix elements are located using direct index arithmetic.  Our 
dense LU algorithm is not very well optimized, actually, and we 
think we could make it better.  This suggests  that for very small 
subnetworks a dense matrix solver might be preferred over a sparse 
one.

TABLE I. TEST CONFIGURATIONS

No drivers 1 driver 2 drivers 3 drivers

Devices 0 216 345 432
Order 0 7 (x36) 10 (x36) 13 (x36)
Switch 
toggles

0 1.1M 2.2M 3.4M

Solves 0 573K 852K 998K

Figure 13. Simulation Times

5 CONCLUSION

This paper described the design  and application of a switch-level 
analog extension to Verilog.  We showed an example mixed-signal 
subsystem and described  how to model and verify its functional 
behavior using the extension.  With simulation performance data, 
we showed that the computational  overhead is reasonable for the 
output drivers shown.
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