
Design of a Switch-Level Analog Model for Verilog
Thomas J. Sheffler

Rambus Inc.
Los Altos, CA

tom.sheffler@sbcglobal.net

ABSTRACT
This paper describes a modeling extension to Verilog called
"Switch-Level Analog." It is inspired by the switch-level transistor
modeling facility of Verilog, but extends the value domain from
Logic to Reals and is based on linear relationships between the
currents of branches and the voltages of nodes, rather than the
charge relationships of nodes of earlier switch-level models. This
capability allows the modeling of many types of modern circuit
blocks that exploit the current-source (saturation mode) and
resistive (linear mode) properties of transistors. The model is
implemented as a PLI library. Modeling examples and
performance data are presented.

1 INTRODUCTION

Verilog is the workhorse language for the modeling of digital
designs. In recent years, more and more "mostly digital" designs
include some amount of non-digital circuitry. Unfortunately, the
ability of Verilog to model non-digital phenomena is severely
limited by its inability to transmit non-digital values over Verilog
wires.

This paper describes a PLI (Programming Language Interface)
library that adds an event-driven analog modeling facility to
Verilog. With the library, Verilog wires can name nodes in an
electrical network. Electrical network primitives are provided
allowing the modeling of register-controlled variable sources,
resistors, dependent sources and switches. This repertoire is
sufficient to model many types of analog architectures that occur in
real chip designs. With such a modeling capability, the verification
of the chip-level digital and "coarse" analog architecture can
proceed before transistor-level implementations are available.

The model presented here is event-driven: it responds to changes in
Verilog real-valued registers and delivers value-change events back
through the Verilog scheduler. The model is derived from the
existing switch-level model of Verilog, which is explicitly based on
the notion of connected-component subnetworks [2,10]. Value
changes on the inputs to a subnetwork induce the evaluation of the
steady-state of a subnetwork.

The subnetwork model extends to unknown values such that if any
inputs are unknown the value of an entire subnetwork is simply
unknown. This formulation gives a meaningful basis for the
analysis of "X"-values in some types of analog systems.

1.1 A PLI Library for Linear Systems
We have extended the techniques of [3,11] and implemented a PLI
library for modeling networks of variable linear circuit elements. In
previous work [6,7] we reported on verification issues involving
mixed-signal integration, and showed how to use the library as a
modeling tool. In this paper, we focus on its implementation and
performance.

Our implementation uses the VPI programming interface [9]. The
first level of the library defines system functions for modeling

circuit devices including resistors, current sources, voltage sources
and switches. Verilog registers, whose values may be updated
dynamically, assign time-varying values to these elements.

In this model, an electrical node is named by a Verilog wire. A wire
describes one endpoint of a multi-terminal net in Verilog. Using
PLI functions to trace connectivity, we define all of the aliases of
the multi-terminal net to refer to the same electrical node. In this
manner, wiring hierarchy in the Verilog database connects electrical
nodes in the expected way. This is the same technique used by [3].

A variable resistor is instantiated with the executable call to
"$resistor." An example appears in Figure 1. Wires w1 and w2
identify two electrical nodes, and the call to "$resistor" creates an
electrical circuit element across them. The value of the resistor is
dynamically controlled by "rval," which is called the "control
register" of the resistor. In the example, the initial value of "rval" is
set before instantiating the resistor. Subsequent assignments to the
value of "rval" during simulation change the value of the resistor,
which changes the steady-state of its electrical network.

Figure 1. Resistor Instantiation

Figure 2. Current Source Instantiation

Figure 3. Voltage Source Instantiation

A variable current source is instantiated as shown in Figure 2. In
this example, the Verilog register "cval" is the control register of the
current source. The amount of current flowing through the current
source may be dynamically changed by re-assigning the value of
register "cval."

A variable voltage source may likewise be instantiated as shown in
Figure 3. A voltage source has one control register and also has a
"result register" which is used to report the amount of current
flowing through the voltage source in the steady-state solution of
the subnetwork. In the example, the control register is "vval" and
the result register is "ires."

Figure 4. Switch Instantiation

Figure 5. Voltage Probe Instantiation

An ideal electrical switch is instantiated as illustrated in Figure 4.
The control register of a switch is a Logic value, and selects
whether the switch is ON (1) or OFF (0). An ideal switch has zero
resistance (a short circuit) when ON and zero admittance (an open
circuit) when OFF [1].

A primitive is also provided for observing a voltage on an electrical
node and reporting it in a Verilog register. An example of the use of
a voltage probe is shown in Figure 9. In this fragment, "volts" is a
result register. Whenever the steady-state operating point of the
voltage on the electrical node named by "w1" changes due to a
change in the value of an electrical element in its subnetwork, the
value of "volts" will be changed to reflect the new value.

2 IMPLEMENTATION NOTES

A complete description of the implementation of the library is not
possible in this space. Rather, we highlight some of the important
points one would need to know to implement the library presented
here.

2.1 An Overview of Data-Structure Creation
The Verilog PLI provides hooks for registering callbacks at various
times in the parsing of the netlist and the running of the simulator.
Each device instantiation corresponds to a so-called user-defined
"system function." The callback points we used were "compile",
"start_of_sim " and "calltf.”

The compile callback is called for each system function during
parsing of the netlist. Because the compile phase of Verilog
execution may occur in a process separate from the simulation run-
time, one cannot reliably allocate memory (or otherwise build a
data-structure) during this phase. Thus, during this phase we check
the number of arguments for each device and confirm that they are
the correct type. We are, however, allowed to register selected
callbacks for each system function, and it is here that we register the
“start_of_sim” callback for each device.

The "start_of_sim" callback is called at simulation time 0, and PLI
code is allowed full use of the memory allocation system. For each
circuit device, we build a device data structure, and record
references to the Verilog objects describing the wires and registers
associated with each device. It is also during this phase that we
resolve wire name aliases to electrical nodes (see the next section).

The "calltf" callback corresponds to the invocation of the system
function corresponding to the instantiation of the circuit device in
an "initial" block. It is here that we chose to perform global
operations that need to occur over the collection of all devices. The
following steps are performed here:

• Partitioning:

 The electrical network (now described in terms of devices and
nodes) is partitioned into subnetworks. A connected components
algorithm is run. The rules defining the partitioning are the
following:

• An electrical element can be in only one subnetwork.
• Two electrical elements are in the same subnetwork if they

share a node.

• Build Matrices:

 The devices provided include common linear devices and a special
device: the switch. The structure of the matrix is determined here,
and memory is allocated. Initial values from the control registers
provide initial values for the stamp associated with each device.

• Schedule control register callbacks:

 For each control register, a value-change callback is registered
with the Verilog simulator. A control register value-change results

in the subnetwork being marked for re-evaluation (system solution)
at the end of the current time step. After solution, the result
registers associated with each subnetwork are updated. This event
causes value changes to propagate through the system to logic, and
other electrical subnetworks.

2.2 Using Verilog Wires to Name Circuit Nodes
We adopt the technique of [3] to use Verilog wires to name
electrical nodes. In our system, a reference to a wire, w1, is
translated into a list of the string-valued Verilog path names of all of
its aliases in the netlist. (Finding these aliases is performed once for
each wire and requires a connected-components traversal of the nets
and ports in the database.) Each of these names becomes an entry
in a global hash table that maps path names to an electrical node
object.

During instantiation of the electrical devices, the pathname of each
wire is first looked up in the hash table. If the name is there, the
corresponding node object is retrieved directly. If it is not, all of the
aliases of that wire are added to the hash table and a node object is
created. The process is performed at the beginning of simulation
only. During simulation, the node objects are used directly, and the
hash table is no longer needed.

2.3 Global Supplies, Implicit Sources, and GND
A facility is defined to identify global supplies and implicit sources.
The datum node, "top.GND" is a special node defined in the
database. During the partitioning process, device terminals attached
to this node and its aliases are ignored. Thus, two subnetworks
connected through GND remain separate.

A similar facility has been defined for global supplies and implicit
sources. An implicit source, like "top.VDD" is a wire that is
defined in the top level of the database. A configuration file gives
its voltage value. Wires connected to implicit sources are ignored in
the partitioning process, similar to GND. A reference to an implicit
source in a subnetwork causes the automatic instantiation of a
source device in that subnetwork.

2.4 Matrix Stamps
For each subnetwork, a matrix formulation of the DC steady-state
of the subnetwork system is formulated at simulation time 0, using
the initial values of the control registers. We chose to adopt the
modified nodal analysis formulation described in [5]. The
introduction of the stamps for each linear device (source, resistor,
op-amp or dependent source) is performed as described there.

Figure 6. Switch Definition

The stamp for the switch, is novel, but has been reported elsewhere
[4]. Figure 6 defines the quantities associated with a switch. A
switch connected to nodes j and k, introduces one of two linear
constraints into the system describing the steady-state value of the

subnetwork. If the switch is open, the switch is a zero-valued
current source, introducing the constraint Ijk = 0. If the switch is
closed, the switch is a zero-valued voltage source, introducing the
constraint Vj-Vk = 0.

For each switch S, we introduce a new independent variable Xi: the
branch current through the switch. The row z, corresponding to
variable Xi has the following form as shown in Figure 7, depending
on the value of s.

Figure 7. Switch Matrix Stamps

Thus, for the open switch, the stamp describes the constraint that
the branch-current must be zero, and that the switch introduces no
constraint between the node voltages of the switch. For a closed
switch, it describes the constraint that the node voltages of the
switch must sum to zero, but that the switch introduces no
constraint on the branch current through the switch.

In our implementation, the system is re-solved each time a control
register changes by performing an entire LU factorization and
solve. In [4], the authors describe an iterative approach for
handling switch transitions. We have not experimented with that
formulation.

2.5 Efficient Update of Matrix Stamps
The update of the steady-state values of a subnetwork is initiated by
a value change on a control register. To ensure that only the stamp
values that need to be changed are actually changed, a map from
control registers to stamp elements is maintained. We handle the
updates for linear elements and switches differently.

For the linear elements, each entry in the matrix corresponding to
the element's stamp is potentially a linear combination of
contributions from other elements. Thus, it is possible to adjust the
stamp by the change in magnitude of the control register and
maintain the correct linear combination of contributions of related
elements without also visiting their control registers.

A change in a switch value requires only modifying the three
elements in its row to change its constraint from a zero-valued
current source to a zero-valued voltage source.

2.6 The Simulation Algorithm
A sketch of the event-driven simulation model is described as
follows. At simulation time zero, the steady-state of each
subnetwork is computed using the initial values of the control
registers. When a real-valued control register posts a value-change
event, its attached subnetwork is scheduled for re-evaluation at the
current time step. Re-evaluation consists of adjusting the stamps

related to changed values and recomputing the steady state. The
result registers corresponding to watched branch currents and node
voltages are then posted with new values.

Unknown (X) values are handled in the following way. If any
inputs to a subnetwork are unknown, then the entire subnetwork is
marked as unknown, and unknown values are propagated to all of
its outputs. This is similar to the way in which X values propagate
in Boolean switch-level networks in Verilog.

3 MODELING

The SLA (Switch-Level Analog) library adds two key capabilities to
Verilog useful for the modeling of mixed analog/digital systems.
They are:

1.The ability to send real values along wires,

2.A resolution function for these wires based on the
solution of KCL for linear networks having flows and
potentials.

One way to use the library is to model the Thevenin or Norton
equivalents of drivers and loads on the periphery of modules, and to
do the bulk of behavioral modeling using Verilog behavioral code.
This has performance advantages, as most of the design is modeled
in plain old Verilog and only subnetworks connecting modules are
modeled using linear constructs. (Voltage sources, current sources
and resistors are necessary to model Thevenin and Norton
equivalents. Switches help model circuits whose logical topology
changes as a result of digital control.) Figure 8 illustrates the
general idea.

Figure 8. Modeling of Drivers and Loads

A module with digitally controlled analog drivers is modeled using
SLA components for its output drivers, here labeled with a “D.”
Another module observes these drivers with its loads, here labeled
with an “L.” The hierarchy of the design wires together the drivers
and loads as shown. Each connected component of SLA devices
will form its own subnetwork. Each subnetwork will be evaluated
when the control values of the drivers change. Small subnetworks
are encouraged as they can be solved quickly.

Because each subnetwork is separate, the evaluation schedule of
each may proceed on its own clock. For us, this is an important
performance consideration, because each driver normally operates
on its own clock phase. Without partitioning, a change in any
control value would cause the re-evaluation of all analog values in
the entire design.

3.1 Modeling a Differential Current-Steering
Output Driver with Programmable Swing

Equalization (or pre-emphasis) is a technique used in an output
driver to compensate for data losses and reflections on a noisy
channel [12]. Such reflections cause interference between adjacent
bit-times, which is called inter-symbol interference (ISI). In the
frequency domain, equalization reduces the low-frequency
components of the transmitted signal as appropriate for the
transmission medium.

A Differential Current-Steering Output Driver with Equalization
(DCSODwE) modulates the magnitudes of the bits transmitted on
the channel to manage the frequency components of the signal.
Rather than transmit one of only two voltage levels, representing a
logical "0" and a logical "1", the DCSODwE implements a
recurrence equation, where the voltage value produced at each bit
time is a weighted sum of the data bits before (and possibly after)
the current bit, xi. (Bit xi is called the cursor.) Equation 1 defines
such a recurrence.

(Eq 1) Vi = a0 xI + a1 xi-1 + a2 xi-2

The output driver with equalization builds on a simpler structure: a
differential output driver with programmable swing. This section
describes the simple driver. A following section uses the
components of the simple driver to assemble the output driver with
equalization.

Figure 9. Differential Output Driver

The architecture of a non-equalizing differential current-steering
output driver (DCSOD) (including its termination components) is
shown in Figure 9. The current source produces a current called
iSINK that passes through one of two switches. The bit stream
(value "bit") and its complement (value "!bit") open and close the
switches, which are implemented as appropriately biased
transistors. The termination voltage, vTERM and the termination
pullup resistors reside outside of the driver, on the far end of the
channel. Because the current is always flowing through one of the
legs, this architecture is called "current-steering."

When the driver is transmitting a logical "1", the switch controlled
by "bit" is closed and vp is pulled down to
 VLOW = VTERM - (RTERM * iSINK).
The switch controlled by the complement of "bit" remains open,
and vn floats high to
 VHIGH = VTERM.

Conversely, if the driver is transmitting a logical "0", then vn is
pulled down and vp floats high. (In use, the signals vp and vn are
routed as differential signals to provide noise immunity in the
electrical environment in which the PHY is operating.)

Many modern PHYs provide a means to tune the magnitude of the
current, iSINK. To do this digitally, a component called an IDAC is
used. The IDAC is a form of digital-to-analog converter that
produces a current determined by a digital control value.

An example Verilog definition for the IDAC of the output driver
appears in Figure 10. The call to the PLI function "$csrc"
instantiates the variable circuit element. The body of the "always"
block implements the simulation behavior of the IDAC, changing
the value of the current in response to a change in a digital input.

Figure 10. IDAC Behavioral Model Code Listing

3.2 Output Driver with Equalization
The addition of the equalization capability adds multiple stages to
the output driver. The architecture of a three-stage DCSODwE
(Differential Current-Steering Output Driver with Equalization) is
shown in Figure 11. Here, banks of the simple output driver are
ganged together, each contributing to the pulldown swing of the
differential outputs. The flip-flops are used to produce the bit
stream xi, xi-1 and xi-2; these are normal digital components. The
current source magnitude of each stage is programmable through
the values of ival0, ival1 and ival2. This architecture implements
the following mixed-signal recurrences.

(Eq 2) vpi = VTERM – (ival0 xi + ival1 xi-1 ival2 xi-2)

 and

(Eq 3) vni = VTERM – (ival0 !xi + ival1 !xi-1 ival2 !xi-2)

4 EXPERIMENTAL RESULTS

We modeled the output drivers of a testchip PHY using the
electrical elements shown here, and modified an existing purely-
digital testbench to one that checked the voltage-based recurrence
values of Equation 2 on pin "vp". Our testbench wrote to the
registers controlling the coefficient values (idac0, idac1 and idac2)
and generated a data stream.

Figure 11. Three-Stage Output Driver with Equalization

Figure 12 shows the resulting piecewise-constant waveforms from
such a system. The signal at the top shows the digital-only output
of the pre-existing testbench. The second signal is the transmitted
"analog" value, and the third is the analog signal as sampled by a
receive clock. The fourth signal is the "expect" value as given by
the definition recurrence. The fifth signal is the numerical
difference between the sampled and the expect value, which
remains zero (within a small floating point tolerance) through the
course of the simulation, indicating no error.

Figure 12. Waveform Capture from Good System

4.1 Performance
We measured the computational overhead of our approach. Each
electrical subnetwork should require roughly one matrix inversion
to evaluate its steady state, and we were interested in how much
CPU time this would cost. The other main use of time is PLI (VPI)
overhead.

As a baseline, the PHY system without any analog modeling
required 251 CPU seconds to run a complete test. The full system
has a three stage output driver, but we also wanted to observe the
performance of systems with simpler output drivers and compare
the results. We created systems with one, two, and three-stage
output drivers and measured the CPU time used using both dense
and sparse matrix solvers. Our dense matrix solver is a
straightforward LU decomposition with full pivoting. For our
sparse matrix solver we used Meschach [8].

Table 1 gives information about these four configurations, including
the number of electrical devices, the order of the matrices
generated, the number of digital events (toggles) and the number of
calls to the matrix solve routines.

Figure 13 presents simulation time data collected for the three
configurations as a graph, with the sparse and dense solvers
compared side by side for each configuration. We measured the
total simulation time, and the CPU time used by the numerical
matrix inversion. The rest of the time (minus the baseline) was
lumped into a category called "Other." Significant uses of time in
this category are PLI overhead, and for the sparse case, the lookup
of matrix elements by a search function on their indices.

For the full three-stage output driver, using the sparse solver, the
total simulation time rose to 448 seconds. It is interesting that only
64 seconds of this time was spent inverting the matrix. The other
133 seconds is dedicated to PLI interfacing, and searching the
matrix for entries. For this same configuration, the dense solver
devoted 86 seconds to overhead; this amount is all PLI interfacing
time, since the matrix entry time update is insignificant.

It is interesting to compare the dense implementation for the
extremely small subnetwork resulting from a single stage output
driver. For this case, the total simulation time is less than that for
the sparse case. Notably the "other" time is much smaller, because
the matrix elements are located using direct index arithmetic. Our
dense LU algorithm is not very well optimized, actually, and we
think we could make it better. This suggests that for very small
subnetworks a dense matrix solver might be preferred over a sparse
one.

TABLE I. TEST CONFIGURATIONS

No drivers 1 driver 2 drivers 3 drivers

Devices 0 216 345 432
Order 0 7 (x36) 10 (x36) 13 (x36)
Switch
toggles

0 1.1M 2.2M 3.4M

Solves 0 573K 852K 998K

Figure 13. Simulation Times

5 CONCLUSION

This paper described the design and application of a switch-level
analog extension to Verilog. We showed an example mixed-signal
subsystem and described how to model and verify its functional
behavior using the extension. With simulation performance data,
we showed that the computational overhead is reasonable for the
output drivers shown.

6 REFERENCES
[1] David Bedrosian and Jiri Vlach. Time-Domain Analysis of Networks

with Internally Controlled Switches. IEEE Transactions on Circuits
and Systems. Vol 39. No 3. 1992.

[2] Randal E. Bryant. Boolean Analysis of MOS Circuits. IEEE TCAD,
6(4), pp. 634-649, Jul. 1987.

[3] Chris S. Jones, Jeff McNeal and Ross Segelken. Sending Analog
Values Along Digital Wires. In Proceedings DVCon, 2007.

[4] Vanco Litovski, Milan Savic and Seljko Mrcarica. Electronic Circuit
Simulation with Ideal Switches. HAIT Journal of Science and
Engineering B, Volume 2, Issues 3-4, pp. 476-495. 2005.

[5] Lawrence T. Pillage, Ronald A. Rohrer and Chandramouli
Visweswariah. Electronic Circuit and System Simulation Methods.
McGraw-Hill, TX. December 1, 1994.

[6] Thomas J. Sheffler. Mixed-Signal Integration: Functional Verification
in the Presence of Linear Analog Components. In Proceedings
DesignCon 2008.

[7] Thomas J. Sheffler. Functional Verification in the Presence of Linear
Analog Components. In Proceedings DVCon, 2008.

[8] David Stewart. Meschach. http://www.math.uiowa.edu/~dstewart/
meschach/

[9] Stuart Sutherland. The Verilog PLI Handbook. Springer. 2002.
[10] Verilog-XL User Guide. Product Version 5.1. Sept 2003.
[11] Carl Werner, Claus Hoyer, Andrew Ho et. al. Modeling, Simulation,

and Design of a Multi-Mode 2-10Gb/s Fully Adaptive Serial Link
System. In Proceedings 2005 Custom Integrated Circuits Conference.

[12] Jared L. Zerbe, Carl W. Werner, Vladimir Stojanovic et. al.
Equalization and Clock Recovery for a 2.5-10-Gb/s 2-PAM/4-PAM
Backplane Transceiver Cell. IEEE Journal of Solid-State Circuits.
Vol 38, No. 12. 2003.

http://www.math.uiowa.edu/~dstewart/meschach/
http://www.math.uiowa.edu/~dstewart/meschach/
http://www.math.uiowa.edu/~dstewart/meschach/
http://www.math.uiowa.edu/~dstewart/meschach/

