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ABSTRACT 

Behavioral modeling of analog circuits is widely 

advocated and accepted means to speedup mixed-signal 

SoC level simulations. The validity of these simulation 

results is contingent on the quality of behavioral models 

used. This paper presents a verification methodology to 

establish equivalence of analog behavioral model and the 

SPICE circuit being modeled. The proposed methodology 

employs SPICE-on-top co-simulation environment to 

simulate the behavioral model in the same SPICE 

testbench that is used for circuit characterization using 

SPICE simulations. Circuit characteristics/metrics of 

interest are defined and checkers are developed to 

measure them. Results from SPICE and co-simulation 

runs are compared using automated checkers in a 

regression environment. A dashboard is 

generated showing PASS/FAIL status for every metric 

giving an accurate measure of correlation between the 

SPICE circuit and the behavioral model. These models 

are leveraged to run thousands of simulations to predict 

system performance which is not possible using SPICE 

circuits. This methodology is currently being used at 

Texas Instruments, Inc. to accurately predict system 

performance of complex mixed signal products. 

1. INTRODUCTION 

The verification methodology used in complex RF SoCs 

[1] like those used in single-chip GSM phones almost 

always requires development of analog behavioral models. 

There are several methodologies [2] and [3] that discuss 

different approaches towards behavioral modeling of 

analog circuits. All these methodologies address the 

computation challenge posed by the need to run large 

number of extremely long SoC level simulations. These 

methodologies allow prediction of critical analog 

characteristics of the system, such as phase noise, signal 

to noise ratio, DC offsets, process variations etc. From the 

simulation results, it may be inferred that the system 

functionality and performance matches very closely with 

the specification. However, there is uncertainty associated 

with the predictions of analog characteristics because 

these are based on results from behavioral models, not 

actual circuits. Some of these uncertainties could be 

because of incomplete modeling of analog behavior like 

sensitivity to bias currents. Some could be because of 

inaccurately modeling effects like circuit performance changes 

over various process corners.  

One of the recommended methods to address this challenge is 

to co-simulate the SPICE circuit with rest of the system [4] 

and [5]. Commercial co-simulation tools impose several 

interface restrictions when discrete time (real number) 

behavioral models are used. Also, the computation overhead 

of co-simulating SPICE circuits at the SoC level makes this an 

unviable proposition. Another approach [6] talks about using 

calibrated models with generic parameters to account for 

circuit/process specific behavior. But the sheer number of 

specifications that the analog circuit must meet makes its reuse 

(and therefore reuse of the behavioral model) virtually 

impossible. Other approaches [7] and [8] discuss the use of the 

same stimulus for model and circuit simulations but do not 

give much thought to automatic results validation. This is the 

most common approach for behavioral model validation and is 

very error-prone because it relies on manual comparison of 

simulation results. 

In this paper, a methodology is proposed to compare key 

analog characteristics of the behavioral model with the circuit. 

The idea is to restrict all SPICE and co-simulation runs at the 

block level, where the complexity is manageable and the 

simulation time acceptable. Emphasis is placed on defining the 

critical analog inputs/outputs and characteristics of each block 

and capturing these in checklists which are used as reference 

for model development and validation. Inputs for the 

checklists are gathered not only from the block/module 

specification but also from the circuit designer. The simulation 

environment (testbenches, checkers, simulator setup files etc) 

is built in such a way that every input combination of interest 

is exercised and every output metric of significance is 

measured. Each input/output combination constitutes a 

testcase. Each testcase is run using the SPICE circuit and the 

behavioral model and the degree of correlation is reported. If 

the behavioral model is found to be incomplete or inaccurate, 

it is enhanced and the system performance affected by this 

metric is re-evaluated. Although iterative, this process of 

identifying and fixing defects at the block level to improve 

performance at the system level is infinitely faster than 

attempting to run circuit simulations at the system level. 

The paper is organized as follows. Section 2 introduces the 

BMV flow. Section 3 validates the flow with a real world 

testcase followed by Section 4 which explains the production 

use of the flow. Section 5 concludes the paper. 



2. BMV FLOW 

The behavioral model validation (BMV) methodology 

presented in this paper employs a SPICE-on-top co-

simulation environment to simulate the behavioral model 

in the same SPICE testbench that is used for circuit 

characterization using SPICE simulations. Circuit 

characteristics or metrics of interest are defined and 

checkers are developed to measure them. Results from 

SPICE and co-simulation runs are compared using 

automated checkers in a regression environment. A 

dashboard is generated showing PASS/FAIL status for 

every metric. The entire flow is captured in Figure 1. 

Following sub-sections describe all the steps involved in 

the flow in detail. 

2.1. BMV Flow Pre-requisites 

2.1.1. Checkers 

Automated checkers are important constituents of the 

proposed BMV flow. These checkers process the 

simulation outputs to calculate metrics (circuit 

characteristics) of interest for the circuit under test. For 

example, an important metric for a voltage amplifier 

would be the gain at the output. A typical checker for this 

circuit will process SPICE and co-simulation outputs and 

calculate the gain of the amplifier. Another checker can 

process the same simulation results to calculate another 

parameter of interest such as output noise. Checkers are 

specific to the circuit under test (CUT). Therefore, every 

new circuit or metric requires the development of a new 

checker. Section 3.2 explains the checker development 

process for the DCO (Digitally Controlled Oscillator) 

circuit which was used as a case study. Following sub-

sections present other requirements for the BMV flow 

which can proceed simultaneously with the development 

of checkers.  

2.1.2. Analog Circuit and Model Consistency 

Another flow prerequisite is the consistency of module 

and port names between behavioral model and analog 

circuit. This is necessary because the SPICE testbench 

used to simulate the analog circuit is also used to simulate 

the behavioral model during co-simulation runs. Having 

the same SPICE testbench for both co-simulation runs and 

SPICE runs allows the user to keep a consistent interface 

between the blocks and the SPICE testbench.  

2.1.3. Parameterized Test Benches 

The use of parameterized SPICE testbenches provides the 

flexibility to configure circuit inputs such that all the 

functional and test modes of interest are exercised. For a 

simple voltage amplifier whose gain is controlled by two 

digital inputs (thus giving four different gain settings), 

four different modes of operation are possible 

corresponding to four different gain settings. This necessitates 

four different test cases for this block. The SPICE test bench 

for each test case must be configured such that these two 

digital inputs are varied to exercise all possible gain settings. 

This configuration is only achievable if the digital inputs are 

defined as parameters in the test bench. For every test case, the 

parameter values are generated dynamically in a separate file 

called “parameter file” that is included from the SPICE netlist. 

The four gain voltage amplifier, thus, needs four different 

parameter files. Each file configures the circuit under test in 

one of the four gain modes.  

2.2. BMV Flow Setup 

With all the pre-requisites satisfied, the next step is ‘flow 

setup.’ This phase involves preparing a list of test cases, 

setting up the options file and other tool specific settings. In 

this section some key setup details are explained. 

2.2.1. Test cases preparation 

In the context of this methodology, “test case” and “circuit 

under test” have a very specific meaning. “Circuit under test” 

is the analog block that will be tested against metrics of 

interest. “Test case” refers to a specific combination of inputs 

for which a specific metric is being tested. For example, in the 

digitally controlled amplifier example, the amplifier is the 

circuit under test and “test case” refers to one of the four 

different modes of operation.  

 

As shown in the “flow setup” section of Figure 1, the list of 

checks to be performed on the target block is maintained in a 

file called “circuit parameter file,” CPF. This file contains a 

list of alpha-numeric identifiers for every metric of interest. 

For the voltage amplifier example, the four gain settings are 

listed as four separate identifiers in the CPF file. This is a 

simple but important setup file that causes the flow to iterate 

over every test case until all the entries are processed.  

 

Another file used in the flow is the “parameter file” discussed 

in section 2.1.3. This file, which is specific to a test case, 

contains a list of parameter/value pair in the SPICE format. 

The user needs to configure these parameter files values for 

every test case so that when it gets included from the SPICE 

netlist, the circuit (or the behavioral model in the case of co-

simulation run) is configured to operate in the expected mode.  

2.2.2. Post-processing and Co-sim Options Files 

BMV flow requires two supporting files which set up co-

simulation environment and post processing options for the 

automated checkers.  

The co-simulation environment requires following options in 

the format of <option_name>=<option_value>: 

 
- SUBCKTS = <analog sub-circuit block to be replaced> 

- SPICE_TOP_LIB_CELL_VIEW = <behavioral model’s view> 

- SIGNAL_LIST = <the signal.lst  file> 



 
Figure 1. Behavioral Model Validation (BMV) Flowchart. 

 

The ‘SUBCKTS’ option specifies the analog block name to 

be replaced by its behavioral model. 

‘SPICE_TOP_LIB_CELL_VIEW’ specifies the view 

(architecture name) to use from the compiled behavioral 

model library. ‘SIGNAL_LIST’ file specifies the full path to 

a file containing the order of the signals as expected by 

the checkers. This file specifies the signals of interest to 

the checker. These signals are extracted from the 

simulation output files and written out in the format 

expected by the checker. The ‘ppOptions.opt’ file is used 

by the post processing mechanism (more details in sub-

section 3.2.3). The post processing options are: 
- INPUT  = <test_ID>.fsdb. 

- CHK_INPUT  = <test_ID>.tbl 

- SIGNALS_LIST  = <the signal.lst file> 

- REFERENCE  = ref_<test_ID>.txt 

- CALCULATED  = calc_<test_ID>.txt 

- THRESHOLD  = <%threshold for comparison> 

- RESULTS  = results_<test_ID>.txt 

- CHK_EXEC  = <checker command line> 

The actual value of <test_ID> is the same as the entry in the 

CPF file. ‘INPUT’ specifies the simulation output file name. 

‘CHK_INPUT’ is the ASCII file (in table format) name which 

serves as input to the checker. ‘SIGNALS_LIST’ must be the 

same as in ‘cosim.options’ file. ‘REFERENCE’ refers to the 

location of the reference file and ‘CALCULATED’ refers to the 

location of  the file that contains the calculated values for the 

metric of interest. The format used in these files is: <test_ID> 

<numerical checker output>.  ‘THRESHOLD’ option specifies 

the relative or absolute threshold to use when comparing the 

calculated value with the reference value. ‘RESULTS’ points 

to the location of results_<test_ID>.txt file that contains the 

result of the comparison. ‘CHK_EXEC’ option specifies the 

UNIX command line for invoking the automated checker. 

Directly using the command line for checker invocation 

allows the user to use any kind of checker independent of the 

implementation language used by the checker developer. 



2.3. The BMV Flow 

BMV Algorithm: 

 

1. All entries in circuit parameter file (CPF) 

processed? 

1.1. If yes, go to step 6.  

1.2. If no, go to next step 2. 

 

2. Do SPICE run 

 

3. Post process SPICE results 

 

4. Do Co-simulation run (Invoke 

cosimPostProcess.pl with –COSIM switch) 

 

5. Post process COSIM results 

 

6. Print dashboards (results) 

 

7. Stop. 

 

 

The flow performs two simulations for every test case. 

During SPICE simulation, results are compared with the 

SPEC (theoretical expectation). During SPICE-on-top co-

simulation, results are compared with those from the 

SPICE simulation.  

 

Figure 1 shows the steps involved in the BMV flow and 

Figure 2 describes the work flow for each test case (i.e. 

step 2 through 6 of the BMV algorithm) graphically. 

Three different comparisons are performed corresponding 

to the three ovals in Figure 2. These comparisons 

represent the three dashboards that are generated by the 

flow i.e., SPEC vs SPICE, SPICE vs COSIM, and SPEC 

vs COSIM.  

 

 
Figure 2. High level representation of BMV flow. 

The parameterized testbench has two different sets of inputs 

and one set of outputs. The parameter file (PT) which contains 

the parameter/value pair for controlling inputs constitutes 

“parameterized stimuli” and the other inputs that are common 

across all test cases constitute “fixed stimuli”.  

 

Three sets of values for each metric are used in the flow i.e. 

SPICE, CO-SIM, and SPEC. SPICE and CO-SIM values are 

generated by the SPICE and co-simulation runs while SPEC 

values are theoretical expectations.  
 

3. BMV FLOW CASE STUDY 

3.1. The Digitally Controller Oscillator (DCO) 

A DCO circuit is used as a test case for validating the BMV 

flow. The DCO is a low-voltage deep-submicron CMOS 

oscillator with 4, 574 transistors on C021 process technology 

capable of supporting 70 nm minimum gate lengths. It enables 

frequency synthesis without the use of any analog tuning 

voltage control line [9]. It operates in discrete time domain, 

although the underlying functionality is continuous time and 

continuous amplitude in nature [10]. The DCO is built using 

an LC oscillator with fixed inductance and variable 

capacitance.  

 

The variable capacitance is implemented using MOS varactors. 

The varactor array is divided into three major groups that 

reflect three general operational modes: process-voltage 

temperature (PVT), acquisition (ACQ), and tracking (TFB).  

 

The first and second groups coarsely set the desired center 

frequency of oscillation before the actual transmit or reception 

begins, and the third group controls the oscillating frequency 

precisely during actual operation. PVT mode uses 7 bit binary 

weighted encoding. Each step of PVT is ∆f
PVT

 = 2.0 Mhz, 

Acquisition is ∆f
ACQ

 = 500 Khz and for tracking fractional 

(TFB) mode, it is ∆f
TIB/TFB

 = 35 KHz [10].  

3.2. Metrics of Interests and BMV for DCO 

The key care about for the DCO is the tuning precision.  Based 

on the digital controls, the oscillating frequency of DCO 

should be predictable with certain degree of accuracy. Of 

paramount concern is the monotonicity of the frequency 

stepping in a given direction of traversal. The Analog Model 

Checklist for DCO is shown in Table I.  

 

To verify this in simulation, a checker was implemented in 

PERL. The time value pair of the oscillator output is captured 

by the simulator and provided to this checker as a file pointer. 

Other inputs are the direction of traversal, period of transient 

simulation and the precise time stamp at which traversal is 

forced. As an example, the frequency steps for the PVT mode 

are shown in Figure 3. 

 



Table I: DCO Analog Model Checklist 

 
 

 

 
Figure 3. DCO PVT Frequency Stepping (Monotonic behavior) 

 

The checker uses these inputs to compute the period of 

oscillation based on zero-crossings and the direction of 

traversal and provides this information in a text output. 

The BMV flow compares this with the golden reference 

values to flag an error in case of mismatch. The results of 

the DCO block are shown in Figure 4.   

3.3. Analysis of DCO BMV Results 

The PVT failures were traced to incorrect generic settings 

in the DCO behavioral model which limited the minimum 

frequency. ACQ failures pointed to incorrect bit mapping 

of the ACQ bits in the oscillator core. The flagged failures 

in the ACQ results helped amending the DCO spec.  

 

The varactor sizes were modified to create a distinctive 

frequency response in the highest precision TFB mode. 

Frequency stepping range was 1600fs with new sizes. 

While the expectation is a time period deviation of 1600fs 

in the positive direction, the BMV flow determined that 

the results did not meet this expectation. 

 

 

 
Figure 4. Dashboards showing DCO BMV results. 



This failure was flagged as severe with code “1” (Figure 

4). Figure 5 shows this response. After detailed 

investigation, it was determined that there was inversion 

added to the TFB bits in the SPICE netlist.  

 
Figure 5. DCO TFB Frequency Stepping (non-monotonic). 

3.4. Applicability to other Mixed-Signal circuits 

Previous sections demonstrated the BMV methodology 

with a discrete circuit (Digitally Controlled Oscillator). 

The applicability of the BMV flow is not restricted to this 

category of circuits because the methodology is 

independent of the type of design being validated. This 

flexibility is offered by the use of custom checkers that 

are design specific and can be equipped to process both 

discrete and continuous simulation data to extract metrics 

of interest. The BMV flow was also used to validate the 

gain of an amplifier (continuous time output) against 

various gain combinations. The analysis of results pointed 

to a deficiency in the behavioral model due to which the 

output gain did not reflect changes in the bias currents at 

the input. It should be noted that deviations between 

SPICE and behavioral model can be caused by several 

other factors, such as insufficient or incorrect modeling or 

inability to model higher order effects of transistors. The 

goal of this methodology is to highlight these deviations. 

The user needs to correctly identify the root cause of the 

deviation and decide whether or not it makes sense to fix 

it by more accurate modeling.  

4. ANALOG MODEL CHECKLIST 

The key stakeholders in behavioral modeling are System 

Design, Circuit Design and Verification teams. System 

and Circuit Design teams are more focused on the 

performance of the model and how closely the model 

matches with the circuit. The Verification team is 

concerned about the modeling of controls, interfaces, 

supply voltages in many cases and power consumption 

modeling as well. The reference for each of these teams is 

the Design Specification. Each stakeholder defines key 

care abouts for every block to be modeled. These are 

captured in “Analog Model Template”. “Analog Model 

Checklist is created with owners and approvers. The 

Analog Model Template documents the detailed 

description of the modeling strategy and the effects being 

modeled along with the post processing used to evaluate the 

model and circuit performance. It also lists various stages of 

development and targets for each stage. Analog Model 

Checklist is used to track the completion of every stage and to 

ensure that model development and verification progress is 

being made in the right direction. 

5. CONCLUSION 

Real circuit bugs can easily escape even in successful SoC 

level simulations if the behavioral model does not correlate 

with the circuit and the circuit carries these bugs (for ex. the 

inversion bug in TFB mode of DCO). Clearly, the impact of 

such non-equivalence between model and circuit resulted in 

unexpected failure on silicon and thereby proved to be costly 

to the project in terms of time and human resource. BMV flow 

can provide a model to the SoC team which will accurately 

reflect the functional behavior of the SPICE circuit and in the 

process debug functional issues and address them early on in 

the project cycle. It enables the functional teams to ensure that 

all specification details are addressed in the model.  
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