
Predicting the Correlation between Analog Behavioral Models
and SPICE Circuits for robust SoC Verification

Vipin Sharma* Guha Lakshmanan* Sandeep Tare* Sudhind Dhamankar*
 vipin@ti.com glakshma@ti.com tare@ti.com sudhind@ti.com

*Texas Instruments Incorporated

ABSTRACT

Behavioral modeling of analog circuits is widely

advocated and accepted means to speedup mixed-signal

SoC level simulations. The validity of these simulation

results is contingent on the quality of behavioral models

used. This paper presents a verification methodology to

establish equivalence of analog behavioral model and the

SPICE circuit being modeled. The proposed methodology

employs SPICE-on-top co-simulation environment to

simulate the behavioral model in the same SPICE

testbench that is used for circuit characterization using

SPICE simulations. Circuit characteristics/metrics of

interest are defined and checkers are developed to

measure them. Results from SPICE and co-simulation

runs are compared using automated checkers in a

regression environment. A dashboard is

generated showing PASS/FAIL status for every metric

giving an accurate measure of correlation between the

SPICE circuit and the behavioral model. These models

are leveraged to run thousands of simulations to predict

system performance which is not possible using SPICE

circuits. This methodology is currently being used at

Texas Instruments, Inc. to accurately predict system

performance of complex mixed signal products.

1. INTRODUCTION

The verification methodology used in complex RF SoCs

[1] like those used in single-chip GSM phones almost

always requires development of analog behavioral models.

There are several methodologies [2] and [3] that discuss

different approaches towards behavioral modeling of

analog circuits. All these methodologies address the

computation challenge posed by the need to run large

number of extremely long SoC level simulations. These

methodologies allow prediction of critical analog

characteristics of the system, such as phase noise, signal

to noise ratio, DC offsets, process variations etc. From the

simulation results, it may be inferred that the system

functionality and performance matches very closely with

the specification. However, there is uncertainty associated

with the predictions of analog characteristics because

these are based on results from behavioral models, not

actual circuits. Some of these uncertainties could be

because of incomplete modeling of analog behavior like

sensitivity to bias currents. Some could be because of

inaccurately modeling effects like circuit performance changes

over various process corners.

One of the recommended methods to address this challenge is

to co-simulate the SPICE circuit with rest of the system [4]

and [5]. Commercial co-simulation tools impose several

interface restrictions when discrete time (real number)

behavioral models are used. Also, the computation overhead

of co-simulating SPICE circuits at the SoC level makes this an

unviable proposition. Another approach [6] talks about using

calibrated models with generic parameters to account for

circuit/process specific behavior. But the sheer number of

specifications that the analog circuit must meet makes its reuse

(and therefore reuse of the behavioral model) virtually

impossible. Other approaches [7] and [8] discuss the use of the

same stimulus for model and circuit simulations but do not

give much thought to automatic results validation. This is the

most common approach for behavioral model validation and is

very error-prone because it relies on manual comparison of

simulation results.

In this paper, a methodology is proposed to compare key

analog characteristics of the behavioral model with the circuit.

The idea is to restrict all SPICE and co-simulation runs at the

block level, where the complexity is manageable and the

simulation time acceptable. Emphasis is placed on defining the

critical analog inputs/outputs and characteristics of each block

and capturing these in checklists which are used as reference

for model development and validation. Inputs for the

checklists are gathered not only from the block/module

specification but also from the circuit designer. The simulation

environment (testbenches, checkers, simulator setup files etc)

is built in such a way that every input combination of interest

is exercised and every output metric of significance is

measured. Each input/output combination constitutes a

testcase. Each testcase is run using the SPICE circuit and the

behavioral model and the degree of correlation is reported. If

the behavioral model is found to be incomplete or inaccurate,

it is enhanced and the system performance affected by this

metric is re-evaluated. Although iterative, this process of

identifying and fixing defects at the block level to improve

performance at the system level is infinitely faster than

attempting to run circuit simulations at the system level.

The paper is organized as follows. Section 2 introduces the

BMV flow. Section 3 validates the flow with a real world

testcase followed by Section 4 which explains the production

use of the flow. Section 5 concludes the paper.

2. BMV FLOW

The behavioral model validation (BMV) methodology

presented in this paper employs a SPICE-on-top co-

simulation environment to simulate the behavioral model

in the same SPICE testbench that is used for circuit

characterization using SPICE simulations. Circuit

characteristics or metrics of interest are defined and

checkers are developed to measure them. Results from

SPICE and co-simulation runs are compared using

automated checkers in a regression environment. A

dashboard is generated showing PASS/FAIL status for

every metric. The entire flow is captured in Figure 1.

Following sub-sections describe all the steps involved in

the flow in detail.

2.1. BMV Flow Pre-requisites

2.1.1. Checkers

Automated checkers are important constituents of the

proposed BMV flow. These checkers process the

simulation outputs to calculate metrics (circuit

characteristics) of interest for the circuit under test. For

example, an important metric for a voltage amplifier

would be the gain at the output. A typical checker for this

circuit will process SPICE and co-simulation outputs and

calculate the gain of the amplifier. Another checker can

process the same simulation results to calculate another

parameter of interest such as output noise. Checkers are

specific to the circuit under test (CUT). Therefore, every

new circuit or metric requires the development of a new

checker. Section 3.2 explains the checker development

process for the DCO (Digitally Controlled Oscillator)

circuit which was used as a case study. Following sub-

sections present other requirements for the BMV flow

which can proceed simultaneously with the development

of checkers.

2.1.2. Analog Circuit and Model Consistency

Another flow prerequisite is the consistency of module

and port names between behavioral model and analog

circuit. This is necessary because the SPICE testbench

used to simulate the analog circuit is also used to simulate

the behavioral model during co-simulation runs. Having

the same SPICE testbench for both co-simulation runs and

SPICE runs allows the user to keep a consistent interface

between the blocks and the SPICE testbench.

2.1.3. Parameterized Test Benches

The use of parameterized SPICE testbenches provides the

flexibility to configure circuit inputs such that all the

functional and test modes of interest are exercised. For a

simple voltage amplifier whose gain is controlled by two

digital inputs (thus giving four different gain settings),

four different modes of operation are possible

corresponding to four different gain settings. This necessitates

four different test cases for this block. The SPICE test bench

for each test case must be configured such that these two

digital inputs are varied to exercise all possible gain settings.

This configuration is only achievable if the digital inputs are

defined as parameters in the test bench. For every test case, the

parameter values are generated dynamically in a separate file

called “parameter file” that is included from the SPICE netlist.

The four gain voltage amplifier, thus, needs four different

parameter files. Each file configures the circuit under test in

one of the four gain modes.

2.2. BMV Flow Setup

With all the pre-requisites satisfied, the next step is ‘flow

setup.’ This phase involves preparing a list of test cases,

setting up the options file and other tool specific settings. In

this section some key setup details are explained.

2.2.1. Test cases preparation

In the context of this methodology, “test case” and “circuit

under test” have a very specific meaning. “Circuit under test”

is the analog block that will be tested against metrics of

interest. “Test case” refers to a specific combination of inputs

for which a specific metric is being tested. For example, in the

digitally controlled amplifier example, the amplifier is the

circuit under test and “test case” refers to one of the four

different modes of operation.

As shown in the “flow setup” section of Figure 1, the list of

checks to be performed on the target block is maintained in a

file called “circuit parameter file,” CPF. This file contains a

list of alpha-numeric identifiers for every metric of interest.

For the voltage amplifier example, the four gain settings are

listed as four separate identifiers in the CPF file. This is a

simple but important setup file that causes the flow to iterate

over every test case until all the entries are processed.

Another file used in the flow is the “parameter file” discussed

in section 2.1.3. This file, which is specific to a test case,

contains a list of parameter/value pair in the SPICE format.

The user needs to configure these parameter files values for

every test case so that when it gets included from the SPICE

netlist, the circuit (or the behavioral model in the case of co-

simulation run) is configured to operate in the expected mode.

2.2.2. Post-processing and Co-sim Options Files

BMV flow requires two supporting files which set up co-

simulation environment and post processing options for the

automated checkers.

The co-simulation environment requires following options in

the format of <option_name>=<option_value>:

- SUBCKTS = <analog sub-circuit block to be replaced>

- SPICE_TOP_LIB_CELL_VIEW = <behavioral model’s view>

- SIGNAL_LIST = <the signal.lst file>

Figure 1. Behavioral Model Validation (BMV) Flowchart.

The ‘SUBCKTS’ option specifies the analog block name to

be replaced by its behavioral model.

‘SPICE_TOP_LIB_CELL_VIEW’ specifies the view

(architecture name) to use from the compiled behavioral

model library. ‘SIGNAL_LIST’ file specifies the full path to

a file containing the order of the signals as expected by

the checkers. This file specifies the signals of interest to

the checker. These signals are extracted from the

simulation output files and written out in the format

expected by the checker. The ‘ppOptions.opt’ file is used

by the post processing mechanism (more details in sub-

section 3.2.3). The post processing options are:
- INPUT = <test_ID>.fsdb.

- CHK_INPUT = <test_ID>.tbl

- SIGNALS_LIST = <the signal.lst file>

- REFERENCE = ref_<test_ID>.txt

- CALCULATED = calc_<test_ID>.txt

- THRESHOLD = <%threshold for comparison>

- RESULTS = results_<test_ID>.txt

- CHK_EXEC = <checker command line>

The actual value of <test_ID> is the same as the entry in the

CPF file. ‘INPUT’ specifies the simulation output file name.

‘CHK_INPUT’ is the ASCII file (in table format) name which

serves as input to the checker. ‘SIGNALS_LIST’ must be the

same as in ‘cosim.options’ file. ‘REFERENCE’ refers to the

location of the reference file and ‘CALCULATED’ refers to the

location of the file that contains the calculated values for the

metric of interest. The format used in these files is: <test_ID>

<numerical checker output>. ‘THRESHOLD’ option specifies

the relative or absolute threshold to use when comparing the

calculated value with the reference value. ‘RESULTS’ points

to the location of results_<test_ID>.txt file that contains the

result of the comparison. ‘CHK_EXEC’ option specifies the

UNIX command line for invoking the automated checker.

Directly using the command line for checker invocation

allows the user to use any kind of checker independent of the

implementation language used by the checker developer.

2.3. The BMV Flow

BMV Algorithm:

1. All entries in circuit parameter file (CPF)

processed?

1.1. If yes, go to step 6.

1.2. If no, go to next step 2.

2. Do SPICE run

3. Post process SPICE results

4. Do Co-simulation run (Invoke

cosimPostProcess.pl with –COSIM switch)

5. Post process COSIM results

6. Print dashboards (results)

7. Stop.

The flow performs two simulations for every test case.

During SPICE simulation, results are compared with the

SPEC (theoretical expectation). During SPICE-on-top co-

simulation, results are compared with those from the

SPICE simulation.

Figure 1 shows the steps involved in the BMV flow and

Figure 2 describes the work flow for each test case (i.e.

step 2 through 6 of the BMV algorithm) graphically.

Three different comparisons are performed corresponding

to the three ovals in Figure 2. These comparisons

represent the three dashboards that are generated by the

flow i.e., SPEC vs SPICE, SPICE vs COSIM, and SPEC

vs COSIM.

Figure 2. High level representation of BMV flow.

The parameterized testbench has two different sets of inputs

and one set of outputs. The parameter file (PT) which contains

the parameter/value pair for controlling inputs constitutes

“parameterized stimuli” and the other inputs that are common

across all test cases constitute “fixed stimuli”.

Three sets of values for each metric are used in the flow i.e.

SPICE, CO-SIM, and SPEC. SPICE and CO-SIM values are

generated by the SPICE and co-simulation runs while SPEC

values are theoretical expectations.

3. BMV FLOW CASE STUDY

3.1. The Digitally Controller Oscillator (DCO)

A DCO circuit is used as a test case for validating the BMV

flow. The DCO is a low-voltage deep-submicron CMOS

oscillator with 4, 574 transistors on C021 process technology

capable of supporting 70 nm minimum gate lengths. It enables

frequency synthesis without the use of any analog tuning

voltage control line [9]. It operates in discrete time domain,

although the underlying functionality is continuous time and

continuous amplitude in nature [10]. The DCO is built using

an LC oscillator with fixed inductance and variable

capacitance.

The variable capacitance is implemented using MOS varactors.

The varactor array is divided into three major groups that

reflect three general operational modes: process-voltage

temperature (PVT), acquisition (ACQ), and tracking (TFB).

The first and second groups coarsely set the desired center

frequency of oscillation before the actual transmit or reception

begins, and the third group controls the oscillating frequency

precisely during actual operation. PVT mode uses 7 bit binary

weighted encoding. Each step of PVT is ∆f
PVT

 = 2.0 Mhz,

Acquisition is ∆f
ACQ

 = 500 Khz and for tracking fractional

(TFB) mode, it is ∆f
TIB/TFB

 = 35 KHz [10].

3.2. Metrics of Interests and BMV for DCO

The key care about for the DCO is the tuning precision. Based

on the digital controls, the oscillating frequency of DCO

should be predictable with certain degree of accuracy. Of

paramount concern is the monotonicity of the frequency

stepping in a given direction of traversal. The Analog Model

Checklist for DCO is shown in Table I.

To verify this in simulation, a checker was implemented in

PERL. The time value pair of the oscillator output is captured

by the simulator and provided to this checker as a file pointer.

Other inputs are the direction of traversal, period of transient

simulation and the precise time stamp at which traversal is

forced. As an example, the frequency steps for the PVT mode

are shown in Figure 3.

Table I: DCO Analog Model Checklist

Figure 3. DCO PVT Frequency Stepping (Monotonic behavior)

The checker uses these inputs to compute the period of

oscillation based on zero-crossings and the direction of

traversal and provides this information in a text output.

The BMV flow compares this with the golden reference

values to flag an error in case of mismatch. The results of

the DCO block are shown in Figure 4.

3.3. Analysis of DCO BMV Results

The PVT failures were traced to incorrect generic settings

in the DCO behavioral model which limited the minimum

frequency. ACQ failures pointed to incorrect bit mapping

of the ACQ bits in the oscillator core. The flagged failures

in the ACQ results helped amending the DCO spec.

The varactor sizes were modified to create a distinctive

frequency response in the highest precision TFB mode.

Frequency stepping range was 1600fs with new sizes.

While the expectation is a time period deviation of 1600fs

in the positive direction, the BMV flow determined that

the results did not meet this expectation.

Figure 4. Dashboards showing DCO BMV results.

This failure was flagged as severe with code “1” (Figure

4). Figure 5 shows this response. After detailed

investigation, it was determined that there was inversion

added to the TFB bits in the SPICE netlist.

Figure 5. DCO TFB Frequency Stepping (non-monotonic).

3.4. Applicability to other Mixed-Signal circuits

Previous sections demonstrated the BMV methodology

with a discrete circuit (Digitally Controlled Oscillator).

The applicability of the BMV flow is not restricted to this

category of circuits because the methodology is

independent of the type of design being validated. This

flexibility is offered by the use of custom checkers that

are design specific and can be equipped to process both

discrete and continuous simulation data to extract metrics

of interest. The BMV flow was also used to validate the

gain of an amplifier (continuous time output) against

various gain combinations. The analysis of results pointed

to a deficiency in the behavioral model due to which the

output gain did not reflect changes in the bias currents at

the input. It should be noted that deviations between

SPICE and behavioral model can be caused by several

other factors, such as insufficient or incorrect modeling or

inability to model higher order effects of transistors. The

goal of this methodology is to highlight these deviations.

The user needs to correctly identify the root cause of the

deviation and decide whether or not it makes sense to fix

it by more accurate modeling.

4. ANALOG MODEL CHECKLIST

The key stakeholders in behavioral modeling are System

Design, Circuit Design and Verification teams. System

and Circuit Design teams are more focused on the

performance of the model and how closely the model

matches with the circuit. The Verification team is

concerned about the modeling of controls, interfaces,

supply voltages in many cases and power consumption

modeling as well. The reference for each of these teams is

the Design Specification. Each stakeholder defines key

care abouts for every block to be modeled. These are

captured in “Analog Model Template”. “Analog Model

Checklist is created with owners and approvers. The

Analog Model Template documents the detailed

description of the modeling strategy and the effects being

modeled along with the post processing used to evaluate the

model and circuit performance. It also lists various stages of

development and targets for each stage. Analog Model

Checklist is used to track the completion of every stage and to

ensure that model development and verification progress is

being made in the right direction.

5. CONCLUSION

Real circuit bugs can easily escape even in successful SoC

level simulations if the behavioral model does not correlate

with the circuit and the circuit carries these bugs (for ex. the

inversion bug in TFB mode of DCO). Clearly, the impact of

such non-equivalence between model and circuit resulted in

unexpected failure on silicon and thereby proved to be costly

to the project in terms of time and human resource. BMV flow

can provide a model to the SoC team which will accurately

reflect the functional behavior of the SPICE circuit and in the

process debug functional issues and address them early on in

the project cycle. It enables the functional teams to ensure that

all specification details are addressed in the model.

REFERENCES

[1]. K. Muhammad, T. Murphy and R. B. Staszewski “Verification

of Digital RF Processors: RF, Analog, Baseband, and Software,”

IEEE Journal of Solid-state Circuits, vol. 42, no. 5, pp. 992–

1002, May. 2007.

[2]. W. Yang, “A high-level VHDL-AMS model design

methodology for analog RF LNA and Mixer,” IEEE Journal of

Solid-state Circuits, vol. 42, no. 5, pp. 992–1002, May. 2007.

[3]. R. Khouri et al, “Wireless System Validation using VHDL-AMS

Behavioral Antenna Models: Radio-Frequency Identification

case study,” European Conference on Wireless Technology,

Amsterdam, 2004.

[4]. S. Joeres and S. Heinen, “Functional verification of RF SoCs

using mixed-mode and mixed-domain simulations,”

Proceedings of the 2006 IEEE International Workshop on

Behavioral modeling and Simulation, pp.144-149, Sept. 2006.

[5]. B. Foret et al, “Unified Environment for Mixed-signal Top-level

SoC Verification,” IEEE Journal of Solid-state Circuits, vol. 42,

no. 5, pp. 992–1002, May. 2007.

[6]. A. Mounir et al, “Automatic behavioral model calibration for

efficient PLL system verification,” Proceedings of Design,

Automation and Test in Europe, DATE’03.

[7]. C. Visweswariah et al, “Model development and verification for

high level analog blocks,” 25th ACM/IEEE Design Automation

Conference, paper 25.3, pp 376-382, 1988.

[8]. M. Sida et al, “Bluetooth transceiver design and simulation with

VHDL-AMS,” IEEE Circuits and Devices magazine, pp 11-14,

March 2003.

[9]. R.B. Staszewski, D. Leipold, K. Muhammad and P. T. Balsara

“Digitally Controlled Oscillator (DCO) – Based Architecture of

RF frequency Synthesis in a Deep-Submicrometer CMOS

process” IEEE transactions on Circuits & Systems– II: Analog

& Digital Signal Processing, vol.50, NO.11, and Nov. 2003.

[10]. R.B. Staszewski, D. Leipold, and P. T. Balsar “ALL–Digital

Frequency Synthesizer in Deep-Submicron CMOS” textbook,

wILEY inter-science ISBN 0-471-77255-0.

