Predicting the Correlation between Analog Behavioral Models and SPICE Circuits for Robust SoC Verification

Vipin Sharma Guha Lakshmanan Sandeep Tare Sudhind Dhamankar

- Problem Definition
- Co-sim BMV Workflow
- BMV flow pre-requisites
- Flow setup
- BMV flow execution
- DCO case study
- Applicability to other mixed-signal circuits
- Conclusion

- Problem Definition
- Co-sim BMV Workflow
- BMV flow pre-requisites
- Flow setup
- BMV flow execution
- DCO case study
- Applicability to other mixed-signal circuits
- Conclusion

Problem Definition

- Problem Definition
- Co-sim BMV Workflow
- BMV flow pre-requisites
- Flow setup
- BMV flow execution
- DCO case study
- Applicability to other mixed-signal circuits
- Conclusion

Co-sim BMV Workflow

- Problem Definition
- Co-sim BMV Workflow
- BMV flow pre-requisites
- Flow setup
- BMV flow execution
- DCO case study
- Applicability to other mixed-signal circuits
- Conclusion

Flow Prerequisites

- Problem Definition
- Co-sim BMV Workflow
- BMV flow pre-requisites
- Flow setup
- BMV flow execution
- DCO case study
- Applicability to other mixed-signal circuits
- Conclusion

- Problem Definition
- Co-sim BMV Workflow
- BMV flow pre-requisites
- Flow setup
- BMV flow execution
- DCO case study
- Applicability to other mixed-signal circuits
- Conclusion

Flow Execution

- BMV Algorithm
 - 1. All entries in circuit parameter file (CPF) processed?
 - 1. If yes, go to step 6
 - 2. If no, go to next step 2
 - 2. Do SPICE run
 - 3. Post process SPICE results
 - 4. Do Co-simulation run (Invoke cosimPostProcess.pl with –COSIM switch)
 - 5. Post process COSIM results and go to step 1
 - 6. Print dashboards (results)
 - 7. Stop

- Problem Definition
- Co-sim BMV Workflow
- BMV flow pre-requisites
- Flow setup
- BMV flow execution
- DCO case study
- Applicability to other mixed-signal circuits
- Conclusion

DCO case study – metrics, checkers

- DCO circuit metrics of interest
 - Tuning precision
 - Monotonicity
 - Other controls
- DCO checker development
 - Oscillator frequency/period measurement
 - Monotonicity detection

DCO case study – Monotonicity

	TEST ID	CATEGORY	DESCRIPTION
	dco_PVT_t1	PVT (Coarse Tuning)	Tune DCO PB inputs from Fmin to Fcenter to Fmax
Peri	dco_PVT_t2	PVT (Coarse Tuning)	Tune DCO PB inputs from Fmax to Fcenter to Fmin
600	dco_AB_t1	ACQ (Medium Tuning)	Tune DCO AB inputs from FminAB to FcenterAB to FmaxAB
500	dco_AB_t2	ACQ (Medium Tuning)	Tune DCO AB inputs from FmaxAB to FcenterAB to FminAB
	dco_TFB_t1	TFB (Fine Tuning)	Tune DCO TFB inputs from FminTFB to FmaxTFB
[TEXAS

DCO case study - Tuning precision

DCO case study – results

• TFB, PVT and ACQ dashboards. SPEC-V3 Cuick analysis: MTER SPEC CALC % THRSH PASS/FAIL PARAMTER - JFB regults showing monotonic behavior finversion bug discovered. <<== - ACQ results show inconsister Itsteps (close examination concluded dco_ITE_t1 the ACQ input ports Were not protected according 121 SPEC). that-<<== PVT results look OK. E-vs-COSIM SPICE-vs-COSIM MTER SPICE CALC % THRSH PASS/FAIL PARAMTER SPICE % THRSH PASS/FAIL CALC 1.79e-12 4.8690e-12 AB t1 15 FAILED <<== 2.02e-12 5.6215e-12 15 AB t2 FAILED <<== AB t3 9.67e-13 2.5970e-12 15 FAILED <<== dco TFB tl 8.7674e-14 15 FAILED $\langle \langle = AB t_4 \rangle$ 9.51e-13 2.6451e-12 15 FAILED <<== 7.15e-13 1.9478e-12 15AB t5 FAILED <<== :-vs-COSIM SPEC-vs-COSIM PASS/FAIL MTER SPEC CALC ℅ THRSH PARAMTER SPEC CALC % THRSH PASS/FAIL AB t1 2.12e-12 4.8690e-12 15 FAILED <<== 2.12e-12 5.6215e-12 15 AB t2 FAILED <<== AB t3 1.16e-12 2.5970e-12 15 FAILED <<== 8.0e-14 8.7674e-14 15 dco TFB t1 PASSED 1.26e-12 AB t4 2.6451e-12 15FAILED <<== AB t5 0.65e-12 1.9478e-12 15FAILED <<==

DCO case study – TFB inversion bug

DCO case study – Spec incorrect

DCO Case study – ACQ spec incorrect

Applicability to other mixed signal circuits

- Circuit independent BMV flow
 - Not restricted to discrete circuits (for example DCO)
 - Independent of the type of circuitry
 - Design specific custom checkers make this possible
- CTA (continuous time amplifier) case study highlights
 - Careabouts: gain variation, process corners, bias control and test modes
 - Results
 - Good correlation across all process corners at low gain values
 - Bias current was not modeled

Conclusion

- Functional mismatch can lead to silicon bugs
- Performance mismatch can lead to inaccurate prediction of the system behavior
- Benefits offered by BMV:
 - Models verified against the SPEC
 - Models verified against the circuit
 - Helps in debugging functional issues early on in the project cycle
 - Ensures all specification details are addressed in the model

Last Page Intentionally Left Blank

