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ABSTRACT 
 

We present a general behavioral simulation method for the 
approximate solution of lumped, pressure-driven, static and 
time-dependent solute and solvent transport in large 
microfluidic chips. The method is based on a one-
dimensional discretization of the convection-diffusion 
equation that tracks solvent and solute transport using four 
dual-branch nodal quantities. A comparison of static and 
transient behavior of microfluidic dilution networks and a 
PCM signal generator indicates that the simulation results 
are in good agreement with the model simulations. 

 

1. INTRODUCTION 
 
The design of microfluidic systems with hundreds of 
dynamic on-chip components [1,2] poses a challenge 
because today there are no CAD tools able to simulate time 
dependent transport of solvent and solutes through complex 
chips inclusive of dispersion and convection. Present 
approaches based on 3D CFD tools are only able to solve 
for transport through elementary components hence 
inadequate for system-level simulation. The use of 
analytical macromodel elements [3-5] has been shown to 
dramatically simplify solute-tracking calculations, but this 
method has only been demonstrated in a restricted set of 
linear electrokinetic [9] and static transport problems [3-8]. 
     In this paper we present a general simulation method for 
the approximate solution of pressure-driven linear and 
nonlinear, static and time-dependent solute and solvent 
transport in large chips using a lumped approach. The 
method uses a finite-difference discretization of the one-
dimensional convection-diffusion equation [10]. Solvent 
and solute transport is calculated using four lumped nodal 
quantities: solvent pressure, solvent volumetric flow rate, 
solute concentration and solute current as shown in the one-
dimensional capillary element shown in Fig. 1.  The 
dependence of the solvent and solute branch currents on the 
pressure and concentration values is discussed in the 
sections below. 

 

2.  LUMPED DUAL-BRANCH MODEL 
 
In order to extract a lumped behavioral model we first consider 
the flow of a dilute solute and its solvent carrier through a 
simple  capillary tube as depicted in Fig. 1. For practical 
purposes the dilute solute can be considered to be massless. 
The solvent flow, or volumetric flow rate is driven by a 
pressure difference between the two ends of the capillary. The 
solvent flow also convectively carries any solute within it. If 
the pressure difference is zero the solute itself can also diffuse 
or disperse as it moves forwad through the capillary tube. The 
solute diffusion is driven by concentration diffferences; 
therefore two driving forces: solvent pressure and solute 
concentration and two current quantities: solvent volumetric 
flow and solute current can be defined. 
 From first principles, the solute is represented by a space 
and time dependent concentration ),,,( tzyxc  flowing through 
the capillary with velocity ),( zyv . The solute concentration 
obeys a complex four dimensional convection diffusion PDE 
[11].  However if the capillary diameter is small relatively to 
its length l, the problem is simplified when one considers the 
behavior of the average concentration ),( txC across its cross 
section under the influence of  its average velocity V. The 
average concentration ),( txC  approximately obeys the 
simplified, lumped one-dimensional convection-diffusion 
equation 
 

 
 
Fig. 1. Pressure-driven transport of solvent through a capillary 
results in solvent mass flow rate and solute currents. 
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where D is the effective diffusion constant adjusted for 
Taylor-dispersion [12]. The solvent carrier is assumed 
to be incompressible hence its transport obeys the 
simplified Navier-Stokes equation which can also be 
averaged across the capillary cross section. This resuls 
in the one-dimensional solvent transport equation  

f
P QQ A
x t

β ρ∂ ∂
− ⋅ − ⋅ =

∂ ∂
   (2) 

where Q is the average volumetric mass flow rate,  P  is the 
driving pressure, ρ is the solvent density and A is the 
capillary area. The parameter fβ is related to the solvent 
hydraulic resistance which is a function of its viscosity µ 
and the capillary dimensions.  For a rectangular capillary 
this is approximately [13] 
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where w and h are the capillary width and height, 
respectively.  Equations (1)-(2) uniquely determine the 
solute and solvent transport. Our model is based on a finite 
difference space discretization of these PDEs. This is done 
by slicing a capillary into smaller three-node differential 
elements element of length Δx shown in Fig. 2. The three-
node element thus defines six internal and boundary nodal 
potential quantities (Pi-1/2, Ci-1/2), (Pi,Ci ) and (Pi+1/2,Ci+1/2) 
and four branch flow quantities Qi-1/2, Si-1/2, Qi+1/2, and 
Si+1/2. 

We used the following naive approximations 
2
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Other approximations can be used for improvements in 
convergence and stability [14]. Using Eq. (4) we arrive to 
the set of discrete equations 
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Furthermore, if the capillary walls are flexible, such as 
those in widely used PDMS chips, the element volume is 
dependent on the pressure thus resulting in the fourth 
equation 
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where WC is the capillary wall compliance [15]. Equations 
(5)-(7) describe a lumped network shown in Fig. 3. The top  

 
Fig. 3. Lumped two-branch network model for the capillary 
element. 

branch models the transport of solvent while the bottom 
branch determines the transport of solute. The capacitive 
elements in each branch represent storage of solvent (for 
compressible wall structures) and solute, respectively. Each 
capillary in a chip is hence modeled as a series connection 
of N basic 4-terminal elements as shown in Fig. 4. The 
lumped model of Fig. 3 can be implemented in a hardware 

 

 
 
Fig. 2. Three-node discretization of a differential capillary 
element of length Δx with 6 nodal potential quantities and four 
branch flow quantities. 
 

Fig. 4. Equivalent network for a capillary consisting of N 
elements. 
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language such as Verilog-AMS, and the entire chip is 
specified by a component connectivity netlist. 

  

3.  VERILOG-AMS  IMPLEMENTATION 
 

The two-branch, four port model of Fig. 3 is controlled by 
two potential-like quantities (solvent pressure and solute 
concentration) and two corresponding flow quantities 
(solvent volumetric flow and solute current) at its terminals. 
The mixed nature of the state variables is suitable for 
coding the element behavior in Verilog-AMS. In Verilog-
AMS, the state variable units and their corresponding 
relations are first defined. The nature of Solvent and Solute 
variables is shown in the simplified Listing 1 below for the 
file disciplines.vams. 

 

Listing 1. Flow Variable Natures  
// Solvent  “potential” and “flow” quantities are Psv and Qsv 
// Solute    “potential” and “flow” quantities are Cst and  Sst 
 
// Solvent quantities  
nature SolventCurrent 
      units = "-nL/s" ; 
      access = Qsv ; 
      idt_nature = SolventVolume ; 
endnature 
nature SolventPressure 
      units = "Pa" ; 
      access = Psv ; 
endnature 
 
// Solute quantities  
nature SoluteCurrent 
      units = "Molec/s" ; 
      access = Sst ; 
endnature 
nature SoluteConcentration 
      units = "Molec/nL" ; 
      access = Cst ; 
endnature 
 
// define discipline bindings (both are conservative) 
discipline Solvent 
      domain continuous; 
      potential SolventPressure ; 
      flow SolventCurrent ; 
enddiscipline 
discipline Solute 
      domain continuous; 
      potential SoluteConcentration ; 
      flow SoluteCurrent ; 
enddiscipline 
 
 

The central element in the simulation scheme is the one-
element capillary of Fig. 3 requiring the definition of fluid-

solute-tracking resistors, capacitors and inductors. This 
results in the simplified code of Listing 2 below. In Listing 
2, each element module has two Solvent nodes (a,b) and two 
Solute nodes (c,d). The module FlowResistor also includes 
the convective transport term Qsv(a,b)*Co. The convective 
term uses the solute concentration of one of the nodes such 
that the solute flows into the element. This scheme 
suppresses oscillations and improves numerical 
convergence. 

 

Listing 2. Simplified Flow Resistor, Capacitor and Inductor 
Models. 
 
`include “disciplines.vams” 
 
module FlowResistor(a,b,c,d);  // includes all resistive/conv. transport 
inout a, b; c, d; 
Solvent a, b; 
Solute c, d; 
real CL, CR; Co; 
analog begin 
CL = Cst(c); 
CR = Cst(d); 
 if ( Psv(a,b) >= 0.0 ) begin  // select the concentration moving forward  
            Co = CL; 
 end 
 if ( Psv(a,b) < 0.0) begin 
            Co = CR; 
end 
Qsv(a,b) <+ Gsv * Psv(a,b);   // solvent pressure-mass-flow relation 
Sst(c,d) <+ Gst*Cst(c,d) + Qsv(a,b)*(Co);  //solute  diffusion + convection 
end 
endmodule 

module FlowCapacitor(a,b,c,d);  // includes both solvent and solute 
inout a, b, c, d 
Solvent a, b; 
Solute c, d; 
analog begin 
Psv(a,b) <+ 1.0/cc_compliance*idt(Qsv(a,b)); // define solvent capacitor 
Cst(c,d) <+  volume*idt(Sst(c,d));  // define solute capacitor 
end 
endmodule 

module FlowInductor(a,b,c,d);  // includes both solvent and solute 
inout a, b, c, d 
Solvent a, b; 
Solute c, d; 
analog begin 
area = w*h; 
Lf = density*l/area; 
Qsv(a,b) <+ 1//Lf*idt(Psv(a,b)); // define solvent  inductor 
Cst(c,d) <+ 0.0;                         // define solute short circuit 
end 
endmodule 

 

The module FlowCapacitor accounts for the solute storage 
in the element volume and the capillary wall 



compressibility through the compliance parameter. Finally 
the module FlowInductor accounts for the inertial forces of 
the solvent mass stored in the capillary element.  The 
simplified code of Listing 2 does not account for static 
transport changes originated by capillary and fluid 
elasticity, but the code can be easily adapted to include this 
effect.  For thick-walled capillaries [16, 17] such as those 
present in PDMS devices, the compliance parameter CM is 
approximately  
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where Ew and Ef  are the wall material Young’s modulus 
and fluid bulk modulus, respectively. 

     In order to simulate solute-tracking transport in a 
complex microfluidic chip a nodal netlist is first generated. 
The entire chip description can then be simulated using a 
Verilog-AMS simulator such as Synopsys’ HSPICE or 
Dolphin’s SMASH. In the section below we discuss several 
specific examples. All transient simulations were carried 
out using a robust backward Euler scheme. 

 

4. SIMULATION EXAMPLES AND 
COMPARISON WITH EXPERIMENTS 
 

In order to evaluate the proposed model we next compare 
the simulation results to experimental and theoretical values 
for several microfluidic chips. 

4.1 Binary Dilution Network 
The first chip consists of a binary dilution network 
described in [18]. Such 19-capillary network, as shown in 
Fig. 5 below provides multiple static outputs of equal 
volumetric flows of a solute with binary-weighted 
concentrations.  

 

Fig. 5. Photograph and schematic of a PDMS binary dilution 
network [18]. 

Mixing and dilution takes place in the encircled flow 
capillaries. The capillary dimensions for the resistor R is 
50×16×1500 µm3. Each capillary in the chip is modeled as 
a series connection of 5 differential elements.  

Table 1. Comparison of normalized bit concentrations 
 A B C D 

Theory 1.0 0.5 0.25 0.125 

Simulation 1.0 0.49 0.249 0.1248 

Experiment 1.0 0.49 0.24 0.105 

 

The solute was a solution of fluorescein disodium dye in 
H2O (0.1 mg/ml) and the drive pressure was about 10 PSI. 
Table 1 shows the comparison of theoretical, simulated and 
experimental relative concentrations are in good agreement.  

4.2 Switching Gradient Generator  
The simulator was next used to analyze a 72-capillary, 
PDMS gradient generator [19,20] shown in Fig. 6 with 
equivalent 53-node, 7-output lumped network.  The chip is 

driven by alternating flows of dye and water using a four-
valve multiplexer (MUX) unit causing the direction of the 
gradient to switch (at constant solvent flows). The capillary 
dimensions were 25×16 μm2. We fabricated and tested this 
PDMS chip using the methods described in [18].  

     Fig. 7 shows the chip in operation using fluorescein 
disodium (0.1 mg/ml) as the analyte. Static and time 

 

 

Fig. 6. Photograph and network schematic of a PDMS chemical 
gradient generator. 
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dependent fluorescence intensity at different locations in 
the chip were recorded with an Olympus MVX10 

 

fluorescence microscope and Hamamatsu EM-CCD 
intensified camera. Fig. 8 shows simulated and 
experimental output concentrations under periodic 
excitation. The simulation run, tracking the dynamic 

behavior of 5200 nodal quantities, was completed in three 
minutes in a PC laptop. 

  

4.3 Pulse Coded Modulators 
In the last example we simulated the output of a 
microfluidic pulse coded modulator (PCM) [21].  In a PCM 
chip, solute plugs of fixed concentration are introduced at 
high rate into a long capillary which disperses and mixes 
the plugs. The mixing effect essentially produces an 
average output concentration proportional to the plug 
density.  Fig. 9 shows the schematic of a simple 
microfluidic PCM consisting of two valves represented as 
switches and a long capillary at the exit. The valves are 
driven by digital clock φ  so that at any given time either 
pure solvent (lower valve open, upper closed) or solvent 
plus solute (upper valve open, lower valve closed) flows 
but not both, thus producing a series of solute plugs in the 
flow.  The number of plugs is determined by a digital code 
over a repeating cycle. The concentration at the output of 
the PCM approaches a steady value that is proportional to 
the PCM code. 

 
Fig. 9.  One-bit microfluidic PCM. The long capillary 
averages the plugs producing a smooth solute concentration 
signal. 

 
Fig. 10. One-bit PCM chip 
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Fig. 7. Comparison of experimntal and simulated normalized, 
static dye concentration at the output channels of the gradient 
generator 

 

 

 
Fig. 8. Comparison of simulation (top) of dynamic output 
gradients for the chip of Fig. 6 and experimental results (bot). 
The chip solute inputs were switched at 0.1 Hz. 
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Fig. 11. Simulated solute concentration waveforms for a 1-bit 
PCM chip for different codes and at different lengths from the 
multiplexer exit. The capillary width is 50 µm. The top three 
trace shows the waveforms for PCM code 7/15. 

 

 
Fig. 12. Comparison of theoretical (blue) and verilog-AMS 
simulated PCM output solute concentration versus input code. 

Fig. 10 shows a photograph of an example dual one-bit 
PCM PDMS chip with two output capillaries fabricated by 
our group. Other more complex PCM chips are discussed in 
[21]. Fig. 11 shows example simulated waveforms for a 
one-bit PCM chip with a capillary length of 51 mm. Fig. 12 
shows the simulated output level versus code compared to 
the theoretical response.  The two curves match well with 
good agreement. 

 

 

 

5. SUMMARY 
 

This paper presents a general behavioral simulation method 
for the approximate solution of lumped pressure-driven 
linear and nonlinear, static and time-dependent solute and 
solvent transport in large microfluidic chips.  A comparison 
of simulated and experimental static and transient behavior 
of microfluidic dilution networks and a PCM signal 
generator are in good agreement.  
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