

Behavioral Modeling of Solute Tracking in Microfluidics

Yi Zeng, Farouk Azizi and Carlos H. Mastrangelo

University of Utah, USA

Outline

- Motivation: Simulation of transport through complex chips
- Model: Lumped Dual-Branch Model
- Modeling method: Verilog-AMS description
- Experiments and simulation results
- Summary

Motivation: Simulation of complex chips

- The design of microfluidic systems with hundreds of dynamic on-chip components is a challenge
- CAD tool able to simulate time dependent transport of solvent and solutes through complex chips inclusive of dispersion and convection is desired
- Current tools are inadequate doing system-level simulation
- Analytical macromodel elements are limited with static transport problems

Our Method

- A general simulation method for the approximate solution
- For pressure-driven solute and solvent transport in large microfluidic chips
- Solving linear and nonlinear, static and timedependent transport using lumped approach
- Based on one-dimensional discretization of the Navier-Stokes and convection-diffusion equations

Lumped Transport Model

Q: solvent volumetric flow rate **S**: solute current

 Consider the flow of solute and its solvent carrier through a simple capillary tube

 Four lumped nodal and branch quantities

- PA: Pressure at node A
- *P*_B: Pressure at node B
- CA: Concentration at node A
- *C*^{*B*}: Concentration at node B

- solvent pressure
- solvent volumetric flow rate
- solute concentration
- solute current

Solvent Transport Model

- Assume incompressible flow of uniform density
- Pressure driven and linear

The solvent(incompressible) transport obeys the simplified Navier-Stokes equation. So we get:

$$-\beta_f \cdot Q - A \cdot \frac{\partial P}{\partial x} = \rho \frac{\partial Q}{\partial t}$$

ρ: solvent density; *A:* capillary area; $β_f$: related to the solvent hydraulic resistance

Solute Transport Model

- Two driving forces:
 - Solvent forced convection of solute
 - Solute diffusion driven by concentration gradients
- Solute concentration C(x,t) approximately obeys the simplified, lumped one-dimensional convection-diffusion equation:

$$D \cdot \frac{\partial^2 C}{\partial x^2} - V \cdot \frac{\partial C}{\partial x} = \frac{\partial C}{\partial t}$$

(D: effective diffusion constant)

Dual-Branch finite difference Model

 Make finite difference discretization by slicing a capillary into smaller three-node differential elements:

length Δx with 6 nodal potential quantities and four branch flow quantities.

Lumped Dual-Branch Model

Use following approximations:

$$\frac{\partial^2 C_i}{\partial x^2} \approx \frac{4}{\left(\Delta x\right)^2} \cdot \left[C_{i+1/2} + C_{i-1/2} - 2C_i\right]$$
$$-V_i \frac{\partial C_i}{\partial x} \approx -\frac{V_i}{\Delta x} \cdot \left[C_i - C_{i-1/2}\right]$$

Then reach the set of discrete equations:

$$\begin{aligned} G_{st} \cdot (C_{i+1/2} - C_i) + G_{st} \cdot (C_{i-1/2} - C_i) + Q_{i-1/2} \cdot C_{i-1/2} - Q_{i+1/2} \cdot C_i &= C_D \cdot \frac{dC_i}{dt} \\ (P_{i-1/2} - P_i) - R_f \cdot Q_{i-1/2} &= L_f \frac{dQ_{i-1/2}}{dt} \\ (P_{i+1/2} - P_i) - R_f \cdot Q_{i+1/2} &= L_f \frac{dQ_{i+1/2}}{dt} \end{aligned}$$

If the capillary walls are flexible, the element volume:

$$Q_W = \frac{dV_{ol}}{dt} = \frac{dV}{dP_i} \cdot \frac{dP_i}{dt} = C_W \cdot \frac{dP_i}{dt}$$

where C_W is the capillary wall compliance

Lumped Dual-Branch Model

Equivalent network for a capillary consisting of N elements

Top branch models transport of solvent.

- Bottom branch models transport of solute.
- Capacitive elements represent storage of solvent and solute.

 Each capillary in a chip is modeled as a series connection of *N* basic 4-terminal elements.

Verilog-AMS Implementation

The lumped model can be implemented in a hardware language such as Verilog-AMS.

The state variable units and their corresponding relations are first defined.

The nature of Solvent variables is shown(similar for solute):

```
// Solvent quantities
nature SolventCurrent
    units = "-nL/s";
    access = Qsv;
    idt_nature = SolventVolume;
endnature
nature SolventPressure
    units = "Pa";
    access = Psv;
endnature
```

Define corresponding relations(similar for solute):

// define discipline bindings
discipline Solvent
 domain continuous;
 potential SolventPressure ;
 flow SolventCurrent ;
enddiscipline

Example: Binary Dilution Network

 Chip consists of a binary dilution(19capillary) network and provides multiple static outputs.

 Capillary dimensions for the resistor R is 50×16×1500 µm³

The solute was a solution of fluorescein disodium dye in H₂O (0.1 mg/ml) and the drive pressure was about 10 PSI.

Photograph and schematic of a PDMS binary dilution network

	Α	В	С	D
Theory	1.0	0.5	0.25	0.125
Simulation	1.0	0.49	0.249	0.1248
Experiment	1.0	0.49	0.24	0.105

Table 1. Comparison of normalized bit concentrations

L. Chen, F. Azizi, C. H. Mastrangelo, Lab Chip, 2007, 7

Example: Switching Gradient Generator

Photograph and network schematic

- 72-capillary, PDMS gradient generator.
- Equivalent 53-node, 7-output lumped network.
- Driven by alternating flows of dye and water using a four-valve multiplexer.
- Capillary dimensions: 25×16 µm²

Example: Switching Gradient Generator

Comparison of experimental and simulated normalized, static dye concentration at the output channels of the gradient generator

Example: Switching Gradient Generator

Comparison of simulation (left) of dynamic output gradients for the chip and experimental results (right). The chip solute inputs were switched at 0.1 Hz.

- Two valves are driven by digital clock to produce a series of solute plugs.
- The long capillary averages the plugs producing a smooth solute concentration signal.
- The number of plugs is determined by a digital code over a repeating cycle.
- The concentration at the output of the PCM approaches a steady value that is proportional to the PCM code.

Simulated solute concentration waveforms for a 1-bit PCM chip for different codes and at different lengths from the multiplexer exit. The capillary width is 50 μ m. The top three trace shows the waveforms for PCM code 7/15.

Comparison of theoretical (blue) and verilog-AMS simulated PCM output solute concentration versus input code.

Simulated solute concentration waveforms for a 1-bit PCM chip and at different lengths from the multiplexer exit. The capillary width is 50 μ m. These trace shows the waveforms for PCM code from 2/32 to 32/32.

Summary

- Presented a general behavioral simulation method for the approximate solution of lumped pressure-driven linear and nonlinear, static and time-dependent solute and solvent transport in large microfluidic chips.
- Tracks solvent and solute transport using four dual-branch nodal and branch quantities.
- Implemented with Verilog-AMS netlist.
- Comparison of static and transient behavior of microfluidic dilution networks and a PCM signal generator.
- Simulation results are in good agreement.

Thank you!