

System Level Modeling of Smart Power Switches using SystemC-AMS for Digital Protection Concept Verification Hans-Peter Kreuter, Vladimir Košel, Michael Glavanovics, Robert Illing

> KAI – Center of Competence for Automotive and Industrial Electronics, Infineon Technologies Austria AG, Villach, Austria

2009 IEEE International Behavioral Modeling and Simulation Conference

- > Automotive & Smart Power devices
- Stress caused by inappropriate protection strategies
- System level model for a short circuit scenario
 - >electro-(non-linear) thermal MOSFET model
 - ≻controller model
- Simulation results and verification on HIL testbench using a test chip

Conclusion

Smart Power switch application

Low cost & complexity

- Separate fuse required
- High peak current

- Integrated protection function
- Overcurrent limited
- Fault diagnosis available

Smart Power stage protection

Protection mechanisms:

Current limitation 10 x I_{Load} Thermal shutdown 170°C Voltage clamping 50 V

Protection strategy influences realiblity

H-P Kreuter, KAI GmbH

Motivation

Provide system level models of a SPS

- Electro thermal model for the power stage
- Description of gate driving unit (protection concept)
- Load model worst case scenario >>shorted load<</p>
- ➢ Be ready to model more DIGITAL functionality (PWM ...)
- Verify the models on a HIL testbench

System level model for short circuit scenario

Electric MOSFET model

- Meyer-Cap model
- Fitted for power MOSFET based on measurements and technology parameters

Thermal MOSFET model

 Obtain Z_{th} curve using FEM simulations
Fit R_i/C_i with thermal step response of a P_{diss} Foster network in time domain

Nonlinear thermal MOSFET model

Power dissipation [W]

Controller Model

Over temperature protection – thermal relay with hysteresis

P-controller for current regulation

Model Verification - the test chip

- 2 power MOSFETs
- 11 temperature sensors
- BCD technology
- assembled in P-DSO-28 plastic package

HIL test bench

- switch up to 100 A
- over temperature and over current shutdown
- battery/supply up to 60 V
- ➢ R_{load}/L_{load} configurable
- FPGA for control and data aquisition 40 MHz clock 8 x AI@200 kS 8 x AO@1 MS

[Master thesis Robert Illing]

H-P Kreuter, KAI GmbH

Measurement and Simulation Result (1)

Linear temperature model leads to realively large deviations

Measurement and Simulation Result (2)

Using the nonlinear temperature model results in better accuracy!

Conclusion

An electro-thermal SystemC-AMS MOSFET model was developed

Non-linear thermal Foster network was introduced

SystemC-AMS testbench presented; power MOSFET, load (short circuit) and protection concept

Successful verification using a HIL testbench was presented

Thank You for Your Attention!

17.09.2009