
A Modeling Methodology for Verifying Functionality of a
Wireless Chip

Jesse E. Chen
Qualcomm Inc.
3165 Kifer Rd.

Santa Clara, CA 95051
(408)216-2578

jessec@qualcomm.com

ABSTRACT
This paper describes a modeling methodology for verifying
functionality of a mixed signal wireless chip before tape
out. Modeling methodologies for mixed signal chips can
be distinguished by the way they deal with analog signals.
The methodology uses a custom Verilog PLI function to
model analog blocks for a digital simulator. The PLI
function passes multiple real numbers through one port, in
either direction, at any point in time. The key issues the
methodology addresses are execution speed, capacity,
model portability, and coverage.

1. INTRODUCTION
Functional verification becomes more critical as chips
become more complex. Performance issues like noise and
distortion are always a challenge but with increased
complexity things like connectivity bugs, jumbled up
programming sequences, and misinterpreted interface
specifications cause most re-spins. If first silicon can be
powered up and put into all modes of operation we can at
least measure and diagnose performance issues. If the chip
cannot be powered up, reset, or programmed, another chip
spin would be required before anyone could test
performance. For first silicon, functionality is more
important than whether the noise figure or IIP3 [1] are a
few dB off.
Today’s wireless chips contain several radios for diversity
and GPS [2]. Tomorrow’s devices will cram even more
radios onto a single chip or into a single package. Most
radios operate over several channels and multiple gain
states. In addition, each radio has several automatic
calibration loops and power saving modes. The full
functional verification space can easily span thousands of
simulations, especially if we count diagnostics. To make
matters worse some tests cover milliseconds of action.
Even the latest mixed signal simulators take days to
simulate a millisecond of chip level action. To achieve a
reasonable degree of pre-tape out confidence we have little
choice but to exploit the speed and capacity of a purely
digital (i.e. event driven) simulator.

Digital blocks require no modeling work because digital
simulators work directly with any state of the actual design
(behavioral, RTL, gate). In contrast, analog blocks require
complex hand crafted models.
In addition to running fast, the hand crafted models must
also be portable; they must work in several design
environments. Big companies get big by buying lots of
small companies. Different small companies use different
tools. Further, the best tools, design, and simulation
environments for each team are often specific to each
team’s individual design requirements. Also, newly
acquired teams rarely have time to learn a new
environment or convert their intellectual property to a
common design environment. SOC (System on a Chip)
models must therefore work with multiple digital
simulators. We also require our models to work in the
analog design environment for four reasons: 1) Hand
crafted models of analog blocks must be certified because
they do not automatically match their circuits. If a hand
crafted model works while the real circuit does not, we
tape out a design bug. Side-by-side simulation of the
model and schematic in the analog environment aligns the
two views. 2) The analog designers know the low-to-
middle layers of hierarchy better than anyone else and
typically out number our verification engineers.
Compatibility with the analog design environment brings
the analog design team to bear on diagnostics and model
certification. 3) The ability to mix and match behavioral
and device level models of analog circuits accelerates
diagnostics. A hand crafted model is often the primary
suspect of an anomalous symptom, and rightfully so. By
replacing a suspect model with its device level counterpart
we can quickly convict or acquit the model. If the symptom
persists with the device level model, the design is in error.
If the symptom goes away, the model is in error. The
device level model runs slower but that single diagnostic
run finishes in far less time than we otherwise waste
prosecuting the wrong culprit. 4) The fast behavioral
models can greatly accelerate testbench development. After
the testbench has been developed, we can replace the
behavioral models under test with the device level

mailto:jessec@qualcomm.com

counterparts and focus on testing rather than testbench
development.
The challenge in simulating analog blocks with a digital
simulator is to pass real number traffic between modules.
One approach is not to bother. You could check
connectivity with digital clocks and insert assertions (print
statements) [3] to log how a true analog model would have
responded to its various digital commands. Consider a
receiver chain containing several programmable gain
blocks. You could pump a digital clock signal down the
chain to check connectivity through the signal path. To
check end-to-end gain, each block in the chain could
respond to its digital gain commands by asserting the
selected gain (to the log file). A post processing script
could then interrogate the log file and compute the end-to-
end gain profile. Assertion based verification of the
receiver works as long as you are only interested in the
RF/analog receiver. Assertion based models cannot be used
at the chip level because they do not exercise the ADC
(analog to digital converter). The larger receiver chain
includes baseband digital signal processing algorithms that
don’t work without real numbers flowing into the ADC
models.
Real number traffic poses two problems for digital
simulators, one associated with paralleled drivers and one
associated with RF signals. The driver problem is that
voltages contend while currents sum. Any resolution
function that deals with multiple drivers must know
whether the signals are currents or voltages. RF signals are
troublesome because explicitly simulating every cycle of an
RF carrier significantly slows execution. Even with a
scaled down carrier frequency explicit simulation of every
carrier cycle still requires receiver filters that actually
filter. As shown later, a more elegant solution is to use
baseband equivalent models [4]. Baseband equivalent
models replace high frequency RF real signals with low
frequency baseband complex signals. The complex signals
require transmission of at least two real numbers across a
single wire at each time point.
Before deciding on a PLI function approach we looked at
four other ways to pass real numbers between modules. I
refer to these alternatives as real-to-bits (R2B), wreal,
VHDL, and System Verilog. I first discuss the R2B
approach. To send a real number from one module to
another, the sending module converts the real number to a
64-bit digital word. The 64 bits can be sent over a 64-bit
bus or by “telegraphing” the bits across the wire. The
receiving block then converts the digital word back to a
real number. We cannot use parallel transmission because
replacing the single wire with a 64-bit bus implies we
would verify a different schematic than the one we tape
out. The telegraph option sends the 64 bits across the wire

at a bit rate at least 64 times higher than the sample rate of
the real number. A typical real number sample rate is on
the order of 100MHz. This would require a telegraph bit
rate of 6.4 Gb/sec. Assuming we use baseband equivalent
models for RF blocks, RF signals require transmission of
two numbers during each sample period, which raises the
bit rate to 12.8 GB/sec. This sample rate is high but
tolerable. Current summing increases the bit rate even
further depending on the number of currents entering a
net. To sum three currents the bit rate rises to 19.2
Gb/sec. For currents, the B2R approach amounts to a
crude form of TDMA (time division multiple access). One
problem with the TDMA approach is that the time slots
must be pre-assigned to the various current drivers on the
net. If two signals accidentally share a time slot they either
generate x-states (if they differ) or contribute only half of
what they should (if they are the same). Similarly, if two
drivers representing voltage sources accidentally drive the
same voltage onto the same node they will not generate
any symptoms of a contention problem. The B2R
approach is portable but does not detect all connectivity
bugs and is somewhat clumsy at summing currents.
“Wreal” refers to a VerilogAMS approach to passing real
numbers that does not involve any analog simulator [5].
When we examined this approach, a wire in VerilogAMS
declared as wreal could pass one real number, one way, all
the time. The “one real number” limitation ruled out
baseband equivalent models. A more subtle but important
implication of this limitation was that wreals could not
deal with multple drivers on a common net; wreals could
not sum currents. The “one way” limitation meant that we
could never reverse the flow of real number traffic, which
is important when a limited pin count forces us to use
some pins for bidirectional signals. The “all the time”
limitation meant we could never have two drivers take
turns driving a common node because we could never turn
either driver off. (It is very common for two RF front ends
to take turns driving common baseband legs.) Another
problem with the wreal approach was that it was not well
supported by all simulators; it was not portable.
VHDL and System Verilog are each rich in real number
features but at the time we examined these options the
netlister associated with our analog design environment
did not support the relevant features. Without a netlister
we could not directly verify lower layers of hierarchy,
hierarchy described by schematics. VHDL and System
Verilog were not sufficiently portable. Furthermore, most
of our chip level verification teams prefer Verilog to
VHDL. They use System Verilog but not for analog
models. System Verilog is still matruring and not all
simulators support the full capabilities of the language.

We settled on a custom Verilog PLI function (CVPLIF) for
passing real number traffic. The PLI approach is not new
[6], and neither is the idea of event driven simulation of
baseband equivalent signals [7]. What appears to be new is
a portable implementation of the key HDL enhancements
proposed in [7] along with the ability to distinguish real
numbers representing voltages and currents [6]. I refer to a
wire driven by a CVPLIF as a “HyperWire”. The
remainder of this paper describes the modeling and
verification strategy we developed around the CVPLIF.

2. SIGNAL PATH STRATEGY (BASEBAND
EQUIVALENT MODELS)
One of the key things the CVPLIF lets us do is baseband
equivalent modeling in Verilog. Since the baseband
algorithms on both sides of the wireless link operate only
on the baseband data riding on the RF carrier we can
accelerate run times by suppressing the RF carrier. The
resulting models are called baseband equivalent models.
Baseband equivalent models have been around for decades.
They were used as early as 1929 in the context of rotating
machine theory [8]. However, the ability to write pin
accurate baseband equivalent models in Verilog is new.
This section gives a brief geometric overview of baseband
equivalent modeling and then discusses three key models:
a down converter, a PLL (phase lock loop), and a filter.
A generic RF signal can be written as
RF(t)=I(t) cos(t)-Q(t) sin(t).

” is the carrier frequency in radians per second. I(t) and
Q(t) describe the baseband information riding on the
carrier. The transmitter generates RF(t) from I(t) and Q(t).
The receiver extracts I(t) and Q(t) from RF(t). Referring to
Figure 1, a little high school geometry shows that RF(t) is
the projection of the vector V(t) onto the ReRF axis. The
vector V(t) spins about the origin like the second hand of
an ultra fast clock running backwards. However, the length
of the second hand varies slowly and the clock does not
keep very good time because its speed slowly varies too.
The I(t) and Q(t) signals of interest directly determine the
slow deviations of V(t) from a fixed length, fixed speed,
reverse second hand. Aside from the slow variations, V(t)
spins about the origin at the RF carrier frequency. Relative
to the fixed ReRF-ImRF axes, V(t) and its projections
therefore vary rapidly. Simulation in the ReRF-ImRF
reference frame requires very high sample rates. To
simulate 2.5GHz sinusoids for example, we need sample
rates on the order of 50GHz. Such a high sample rate can
easily strain the available computing capacity in terms of
speed and memory. However, relative to the reference
frame ReBB-ImBB that spins more or less along with V(t),
i.e. at the carrier frequency, V(t) varies slowly. I(t) and
Q(t) are the coordinates of V(t) in the rotating reference
frame. Simulating V(t) in the ReBB-ImBB reference frame

requires sample rates related only to the bandwidth of I(t)
and Q(t), which are orders of magnitude less than the
carrier frequency. The baseband equivalent signal,
BBeq(t)=I(t)+j*Q(t), is essentially a slowly varying phasor.
The dramatic reduction in sample rate required for a
baseband equivalent signal significantly improves run
times. However, baseband equivalent models require that
we pass at least two real numbers, I(t) and Q(t), between
modules instead of one real number, RF(t).

We also send spectral data along with the temporal (IQ)
data. We send the carrier frequency so that the down
converter model can monitor the RF carrier and LO
frequencies and output the IF frequency (i.e. the down
converted frequency), which can be zero. The IF-frequency
is still referred to as a carrier frequency. By simply
checking the carrier frequency exiting the receiver chain
we can determine whether the synthesizer was tuned to the
correct channel. The down converted carrier frequency can
also be used to monitor the frequency of an FM signal.
The down converter model does more than just apply a
gain to the baseband equivalent input signal and compute
the output carrier frequency. Ideally, a direct conversion
down converter extracts I(t) and Q(t) from RF(t). Referring
again to Figure 1, the rotating axes (ReBB-ImBB) then
represent the I- and Q- outputs of an ideal down converter.
However, in the down converter model, the ReBB-ImBB
axes actually spin at the LO frequency. The LO frequency
does not necessarily equal the carrier frequency. If a small
frequency error exists, V(t) spins relative to the down
converter model at a rate equal to the frequency error (i.e.
the IF frequency).

*t

I*cos(*t)-Q*sin(*t)

Q I

*t QI

*t

ReRF

ImRF

ReBB

ImBB
V(t)

I*
si

n(
*t

)+
Q

*c
os

(
*t

)

Figure 1, Baseband Equivalent Signals

The PLL model must be compatible with the signal path
model. The baseband equivalent models in the signal path
require a real number representing LO (local oscillator)
frequency. The real number requirement is not a problem
because schedule constraints usually force us to develop a
high level PLL model ahead of the actual circuit design.
Furthermore, we do not need a detailed PLL model at the
SOC level because the PLL interfaces are fairly well
specified. At the chip level we simulate the PLL with a
crude, flat, fast model. The PLL model is a non-linear
phase domain model capable of simulating fine tuning
transients associated with closing the analog feedback loop
after coarse digital tuning. A simple delay models coarse
tuning (capacitor bank selection). The output of the VCO
is a real number representing frequency. Dividers between
the VCO and down converter are simple gain blocks. (We
build more detailed models of the PLL but we use them in
a stand alone mode to verify that the internal state
machines and registers can sweep through all channels
and that the PLL can lock at each channel. The high level
and detailed PLL models must satisfy the same functional
specifications.)
Figure 2 shows the IQ trajectory of an 802.11a short
training sequence at the output of a direct conversion down
converter simulated with Verilog models equipped with
the CVPLIF. The fine tuning transient of the PLL keeps
the “pretzel” from exactly retracing itself. As the LO
frequency settles to the correct target frequency, the traces
grow closer together. We include an option in the PLL
model to skip both coarse and fine tuning transients
because the transients do not affect most of the functional
tests.

Figure 2 IQ pretzel trajectory

Since the receiver model uses baseband equivalent models,
and since no SOC functional test requires jammers, there
is no functional need to explicitly model the filters. We
only need to ensure the filters are programmed to the

correct bandwidth. We therefore also send the signal
bandwidth along with I, Q, and the carrier frequency. The
bandwidth component of the HyperWire saves us from 1)
having to model analog filters with digital equivalents and
2) having to input a wide band signal or sweep the
frequency of a sinusoidal input. For a direct conversion
receiver, the filter model outputs a bandwidth HyperWire
component equal to the minimum of the incoming
bandwidth and the programmed filter bandwidth. As long
as the input bandwidth signal is large enough we can
easily check filter programming by checking the BW
component exiting the receiver chain. We could check BW
programming with an assertion but the HyperWire
approach gives us everything at a convenient single output
point.
We send the DC component of the signal as another
component of the HyperWire signal because it cannot be
combined with the baseband equivalent signal. Viewed
from the baseband reference frame (ReBB-ImBB) in
Figure 1, a vector fixed in the ReRF-ImRF reference frame
spins clockwise at the carrier frequency.

3. PSEUDO-ELECTRIC SIGNALS
As mentioned earlier, models of analog blocks must be
hand crafted. Hand crafted models do not get taped out.
Modeling boundaries separate what we tape out from what
we do not tape out. We push the modeling boundaries as
far down the hierarchy as we can to verify as much of the
schematics and embedded logic as possible. On the other
hand, we do not push the modeling boundaries down so far
that we must account for loading between analog blocks.
(Digital simulators do not easily simulate loading.) The
resulting modeling boundaries force us to deal with the
differences between voltages and currents.
Voltage and current sources behave differently when
paralleled. Paralleled active voltage drivers always
constitute a design bug, a bug classified as voltage
contention. Paralleled current drivers do not contend; they
sum. However, a net current with no place to flow
constitutes current contention. We do not care exactly what
happens during either form of contention; we only need to
know that contention occurred.
The CVPLIF uses the logic value of the HyperWire to flag
contention. If no contention exists on a HyperWire its logic
value is either 1’b0 or 1’b1. If contention exists the
CVPLIF drives the logic value to 1’bx. If no active
CVPLIF drivers exist, the logic value of the HyperWire is
1’bz.
Individual HyperWire signals can have dimensions of
volts, amps or be dimensionless. Signals with units are
called pseudo-electric signals. Dimensionless signals
contend like voltage signals.

To monitor current you must terminate the wire with a
voltage driver; you must give the current some place to
flow. A current probe is a voltage driver, possibly driving
zero volts. If you do not give a current signal a current
probe to sink the current, the CVPLIF drives the net to
1’bx, signifying current contention.
The voltage driver used as a current monitor serves
another useful purpose. Consider a bias current generator
and a bias current consumer. One bias generator should
connect to just one bias consumer. If a bias pirate were
accidentally connected to the same bias generator, the two
current probes (i.e. voltage drivers) would contend and the
CVPLIF would create an obvious 1’bx symptom of the
connectivity bug.
Pseudo-electric signals pass through HyperWires in
different directions at the same time. You can transmit
voltage one way and current the other without turning
either driver off. This feature makes it very easy to track
current consumption. Current consumption is not only a
critical and programmable functional parameter in itself; it
is also a key symptom of problems that can occur during
scan chain tests. The power supply is a voltage driver.
Each port connected to the supply can drive a pseudo-
electric current signal back to the supply while
simultaneously monitoring the pseudo-electric voltage
signal. The current drawn by each block can depend on the
various modes of operation. The pseudo-electric current
signals sum at the voltage driver making it possible to
generate current consumption profiles. Current
consumption profiles quickly reveal unexpected high
current modes and verify low power modes.
The CVPLIF lets you mix and match the various signal
types passing through a port. One such application is to
detect a bias current mismatch. Not all biases with the
same nominal value are created equal; some can drift a lot
over temperature while others drift only a little. A sloppy
50uA bias generator accidentally connected to a sensitive
50uA bias consumer would likely escape detection until
the customer measured performance (noise figure for
example) over temperature. The ability to easily pass
multiple numbers between modules offers an easy
detection mechanism. Along with the pseudo-electrical
signal representing nominal current we send a
dimensionless signal representing the grade of the bias.
The bias consumer not only checks the nominal value, it
also checks the grade. If either falls out of range the
consumer model shuts down the output, thereby creating
an obvious symptom of the connectivity bug. The break in
signal flow is easy to find. Once the affected block is
identified, a survey of it’s internal “health variables”
quickly pinpoints the problem. A similar approach can be
used to distinguish quiet and noisy power supplies. Since

the bias grade is dimenstionless, it also creates a check for
multiple bias generators accidentally connected to a single
bias consumer because paralleled dimensionless drivers
contend like voltage drivers.

4. CONCLUSION
We verified functionality of a complete SOC using the
CVPLIF to model analog blocks in Verilog. The resulting
run times supported broad coverage; real number traffic let
us verify the complete end-to-end signal path in detail; and
portability kept the project on schedule because each
design team could apply their specific design tools to a
common set of models. The above factors allowed the team
to find and fix well over 100 functional bugs at various
levels before tape out. Aside from three fairly minor bugs
the first silicon was fully functional.
Although the main motivation behind our modeling
methodology was functional verification, the ability to
work with baseband equivalent models also makes it easy
to model common impairments such as IQ mismatch,
phase noise, thermal noise, and common non-linearities
(like AM/AM and AM/PM conversion) in a Verilog model
of the RF/analog subsystem.

5. ACKNOWLEDGMENTS
I extend my most sincere thanks to the following people
for their verification work on the SOC chip: Chan Hong
Park, Paul Dankoski, Subhash Sangam, Zohaib Usmani,
Craig Tainsky, Sandeep Komirishetty, Adithya Mopuri,
Jeongsik Yang, and Jinux Kim. I also thank Jonathan
David, Jim Caravella, Mike Laisne, George Crouse,
Shoufeng Mu, Christian Holenstein, Xiang Li, and the rest
of the Qualcomm rfa_modelers alias for many rigorous
and vigorous discussions on verification and modeling. I
thank Beomsup Kim for his support and the opportunity to
drive this methodology to fruition. I would especially like
to thank Henry Chang of Designers Guide Consulting for
developing the custom PLI function and for his
extraordinary support of our aggressive schedules.

6. REFERENCES
[1] Razavi, Behzad. RF Microelectronics. Prentice Hall. 1998.
[2] Hadjichristos, A. et al. Single-Chip RFCMOS

UMTS/EGSM Transceiver with Integrated Receive
Diversity and GPS. IEEE Custom Integrated Circuits
Conference. 2008.

[3] Stolzman, Richard. Understanding Assertion-Based
Verification. EDA Tech Form.
http://www.edadesignline.com/showArticle.jhtml?articleID=
192200468

[4] Chen, J. E. Modeling RF Systems. http://designers-
guide.org/Modeling/modeling-rf-systems.pdf

http://www.edadesignline.com/showArticle.jhtml?articleID=

[5] Joeres, S. Groh, H. Heinin, S. Event Driven Modeling of RF
Front Ends. IEEE Behavioral Modeling and Simulation
Conference. 2007.

[6] Sheffler, Thomas. Design of a Switch-Level Analog Model
for Verilog. IEEE Behavioral Modeling and Simulation
Conference. 2008.

[7] Joeres, Stefan. Heinin, Stefan. Functional Verification of
Radio Frequency SoCs Using Mixed-Mode and Mixed-
Domain Simulations. IEEE Behavioral Modeling and
Simulation Conference. 2006.

[8] Park, R.H. Two-Reaction Theory of Synchronous Machines.
AIEE Transactions, Vol 48, pages 716-730, (1929).

