

Circuit Synthesizable Guaranteed Passive Modeling for Multiport Structures

Zohaib Mahmood, Luca Daniel Massachusetts Institute of Technology BMAS September-23, 2010

RESEARCH LABORATORY OF ELECTRONICS Massachusetts Institute of Technology

Outline

Motivation for Compact Dynamical Passive Modeling

- What is Passivity?
- Existing Techniques
- Rational Fitting of Transfer Functions
- Results

Outline

- Motivation for Compact Dynamical Passive Modeling
- What is Passivity?
- Existing Techniques
- Rational Fitting of Transfer Functions
- Results

Motivation for Model Generation

Motivation for Model Generation

Outline

Motivation for Compact Dynamical Passive Modeling

- What is Passivity?
- Existing Techniques
- Rational Fitting of Transfer Functions
- Results

DEFINITION

<u>Passivity</u> is the inability of a system (or model) to generate energy

- All physical systems dissipate energy, and are therefore passive
- For numerical models of such systems, this is not guaranteed unless enforced
- Passivity for an impedance (or admittance) matrix is implied by 'positive realness'.

Conditions for Passivity (Hybrid Parameters)

 $\hat{H}(s)$ is passive iff:

$$\overline{\hat{H}(\overline{s})} = \hat{H}(s)$$

 $\hat{H}(s)$ is analytic in $\Re\{s\} > 0$ $\Psi(j\omega) = \hat{H}(j\omega) + \hat{H}(j\omega)^{\dagger} \pm 0 \ \forall \omega$

Condition 1 – Conjugate Symmetry ⇔ Real impulse response

Condition 2 – Stability ⇔ All poles in left half plane

Condition 3 – Non-negativity \Leftrightarrow Non-negative eigen values of $\Psi(j\omega)$

forall @

Conditions for Passivity (Hybrid Parameters)

 $\hat{H}(s)$ is passive iff:

 $\overline{\hat{H}(\overline{s})} = \hat{H}(s)$ $\widehat{\hat{H}(s)} \text{ is analytic in } \Re\{s\} > 0$ $\Psi(j\omega) = \hat{H}(j\omega) + \hat{H}(j\omega)^{\dagger} \pm 0 \ \forall \omega$

Condition 1 – Conjugate Symmetry ⇔ Real impulse response

Condition 2 – Stability ⇔ All poles in left half plane

Condition 3 – Non-negativity \Leftrightarrow Non-negative eigen values of $\Psi(j\omega)$

forall @

Conditions for Passivity (Hybrid Parameters)

 $\hat{H}(s)$ is passive iff:

 $\overline{\hat{H}(\overline{s})} = \hat{H}(s)$ $\hat{H}(s) \text{ is analytic in } \Re\{s\} > 0$ $\Psi(j\omega) = \hat{H}(j\omega) + \hat{H}(j\omega)^{\dagger} \pm 0 \ \forall \omega$

Condition 1 – Conjugate Symmetry ⇔ Real impulse response

Condition 2 – Stability ⇔ All poles in left half plane

Condition 3 – Non-negativity \Leftrightarrow Non-negative eigen values of $\Psi(j\omega)$ forall ω

Manifestation of Passivity

Multi Port Case

$\begin{bmatrix} Z(s) \end{bmatrix}_{n \times n} = \begin{bmatrix} R(s) \end{bmatrix}_{n \times n} + j \begin{bmatrix} X(s) \end{bmatrix}_{n \times n}$ $\begin{bmatrix} R_{1,1}(s) & \cdots & R_{1,n}(s) \end{bmatrix}$

Manifestation of Passivity

Multi Port Case

$[Z(s)]_{n \times n} = [R(s)]_{n \times n} + j[X(s)]_{n \times n}$

$$\begin{bmatrix} R_{1,1}(s) & \cdots & R_{1,n}(s) \\ \vdots & \ddots & \vdots \\ R_{n,1}(s) & \cdots & R_{n,n}(s) \end{bmatrix}$$

-<u>Frequency dependent real matrix</u> must be positive semidefinite for all frequencies

-Property of entire matrix, cannot enforce element-wise

What if passivity is not preserved

Outline

Motivation for Compact Dynamical Passive Modeling

• What is Passivity?

• Existing Techniques

• Rational Fitting of Transfer Functions

• Results

Designers' way around -- Analytic / Intuitive Approaches

RL/RC Networks characterized at operating frequency

Develop RLC Network from intuition

Numerical Approaches

Technique	Pros	Cons	
Projection approaches e.g. PRIMA [Odabasioglu 1997]	Passivity preserved	Does not work with frequency response data.	
Vector Fitting [Gustavsen 1999]	Efficient, Robust	Passivity not preserved	
Pole discarding approaches [Morsey 2001]	Passivity enforced	Highly restrictive, non-passive pole-residues are discarded	
Perturbation based approaches [Talocia 2004, Gustavsen 2008]	Passivity enforced	Two step process. Final models may lose accuracy and optimality	
Optimization based approaches [Suo 2008]	Passivity enforced	Computationally expensive, frequency dependent constraints	

Our Approach: Enforce passivity <u>during</u> identification, using <u>efficient</u> optimization framework

Numerical Approaches

Technique	Pros	Cons	
Projection approaches e.g. PRIMA [Odabasioglu 1997]	Passivity preserved	Does not work with frequency response data.	
Vector Fitting [Gustavsen 1999]	Efficient, Robust	Passivity not preserved	
Pole discarding approaches [Morsey 2001]	Passivity enforced	Highly restrictive, non-passive pole-residues are discarded	
Perturbation based approaches [Talocia 2004, Gustavsen 2008]	Passivity enforced	Two step process. Final models may lose accuracy and optimality	
Optimization based approaches [Suo 2008]	Passivity enforced	Computationally expensive, frequency dependent constraints	

Our Approach: Enforce passivity <u>during</u> identification, using <u>efficient</u> optimization framework

Outline

Motivation for Compact Dynamical Passive Modeling

- What is Passivity?
- Existing Techniques

Rational Fitting of Transfer Functions

• Results

Problem Statement

• Given frequency response samples $\{\omega_i, H_i\}$

Search for optimal passive rational $\hat{H}(s) = \sum_{k=1}^{\kappa} \frac{R_k}{s-a_k} + D$ approximation in the pole residue form

Problem Statement

• Given frequency response samples $\{\omega_i, H_i\}$

Search for optimal passive rational
$$\hat{H}(s) = \sum_{k=1}^{\kappa} \frac{R_k}{s - a_k} + D$$
 approximation in the pole residue form

• Formulate as optimization problem

$$L_2: \min_{p,q} \sum_i \left| H_i - \hat{H}(s) \right|^2 \qquad \qquad L_{\infty}: \min_{p,q} \max_i \left| H_i - \hat{H}(s) \right|$$

Subject to: $\hat{H}(s)$ PASSIVE

Problem Statement

• Given frequency response samples $\{\omega_i, H_i\}$

Search for optimal passive rational
$$\hat{H}(s) = \sum_{k=1}^{\kappa} \frac{R_k}{s - a_k} + D$$
 approximation in the pole residue form

• Formulate as optimization problem

$$L_{2}: \min_{p,q} \sum_{i} \left| H_{i} - \hat{H}(s) \right|^{2} \qquad L_{\infty}: \min_{p,q} \max_{i} \left| H_{i} - \hat{H}(s) \right|$$

Subject to: $\hat{H}(s) PACCONVEX!!$

Convex Optimization Problems

• Non-convex problems difficult to solve

$$\min_{p,q}\sum_{i}\left|H_{i}-\hat{H}(s)\right|^{2}$$

Subject to: $\hat{H}(s)$: PASSIVE

Non-convex function (finding global minimum-extremely difficult)

- Must reformulate as convex optimization problem
 - Convex objective function
 - Convex constraints

Modeling Flow

Problem Formulation

$$\hat{H}(j\omega) = \sum_{k=1}^{\kappa} \frac{\mathbf{R}_{\mathbf{k}}}{j\omega - a_{k}} + \mathbf{D}$$

$$= \sum_{k=1}^{\kappa_{r}} \hat{H}_{k}^{r}(j\omega) + \sum_{k=1}^{\kappa_{c}/2} \hat{H}_{k}^{c}(j\omega) + \mathbf{D}$$

$$= \sum_{k=1}^{\kappa_{r}} \frac{\mathbf{R}_{\mathbf{k}}^{\mathbf{r}}}{j\omega - a_{k}^{r}} + \sum_{k=1}^{\kappa_{c}/2} \left\{ \frac{\Re \mathbf{R}_{\mathbf{k}}^{\mathbf{c}} + j\Im \mathbf{R}_{\mathbf{k}}^{\mathbf{c}}}{j\omega - \Re a_{k}^{c} - j\Im \mathbf{R}_{\mathbf{k}}^{\mathbf{c}}} + \frac{\Re \mathbf{R}_{\mathbf{k}}^{\mathbf{c}} - j\Im \mathbf{R}_{\mathbf{k}}^{\mathbf{c}}}{j\omega - \Re a_{k}^{c} + j\Im a_{k}^{c}} \right\} + \mathbf{D}$$

Problem Formulation

$$\hat{H}(j\omega) = \sum_{k=1}^{\kappa} \frac{\mathbf{R}_{k}}{j\omega - a_{k}} + \mathbf{D}$$

$$= \sum_{k=1}^{\kappa_{r}} \hat{H}_{k}^{r}(j\omega) + \sum_{k=1}^{\kappa_{r}/2} \hat{H}_{k}^{c}(j\omega) + \mathbf{D}$$

$$= \sum_{k=1}^{\kappa_{r}} \frac{\mathbf{R}_{k}^{r}}{j\omega - a_{k}^{r}} + \sum_{k=1}^{\kappa_{r}/2} \left\{ \frac{\Re \mathbf{R}_{k}^{c} + j\Im \mathbf{R}_{k}^{c}}{j\omega - \Re a_{k}^{c} - j\Im a_{k}^{c}} + \frac{\Re \mathbf{R}_{k}^{c} - j\Im \mathbf{R}_{k}^{c}}{j\omega - \Re a_{k}^{c} + j\Im a_{k}^{c}} \right\} + \mathbf{D}$$
series/parallel interconnection of **first** order networks of **second** order networks network

Problem Formulation

$$\hat{H}(j\omega) = \sum_{k=1}^{\kappa} \frac{\mathbf{R}_{k}}{j\omega - a_{k}} + \mathbf{D}$$

$$= \sum_{k=1}^{\kappa_{r}} \hat{H}_{k}^{r}(j\omega) + \sum_{k=1}^{\kappa_{c}/2} \hat{H}_{k}^{c}(j\omega) + \mathbf{D}$$

$$= \sum_{k=1}^{\kappa_{r}} \frac{\mathbf{R}_{k}^{r}}{j\omega - a_{k}^{r}} + \sum_{k=1}^{\kappa_{c}/2} \left\{ \frac{\Re \mathbf{R}_{k}^{c} + j\Im \mathbf{R}_{k}^{c}}{j\omega - \Re a_{k}^{c} - j\Im a_{k}^{c}} + \frac{\Re \mathbf{R}_{k}^{c} - j\Im \mathbf{R}_{k}^{c}}{j\omega - \Re a_{k}^{c} + j\Im a_{k}^{c}} \right\} + \mathbf{D}$$
series/parallel interconnection of **first** order networks series/parallel interconnection of **second** order networks network

Passivity Conditions:

Condition 1 – Conjugate Symmetry: Enforced by construction
Condition 2 – Stability: Enforced during pole-identification
Condition 3 – Non-negativity: Enforced on the building blocks

$$\hat{H}(j\omega) = \sum_{k=1}^{\kappa_r} \hat{H}_k^r(j\omega) + \sum_{k=1}^{\kappa_c/2} \hat{H}_k^c(j\omega) + \mathbf{D}$$

• A sufficient condition for passivity:

$$\hat{H}_{k}^{r}(j\omega), \hat{H}_{k}^{c}(j\omega), \mathbf{D}$$
 passive $\forall k \Longrightarrow \hat{H}(j\omega)$ passive

 $\Re \hat{H}_{k}^{r}(j\omega) \pm 0, \Re \hat{H}_{k}^{c}(j\omega) \pm 0, \mathbf{D} \pm 0 \ \forall k \Longrightarrow \Re \hat{H}(j\omega) \pm 0$

$$\hat{H}(j\omega) = \sum_{k=1}^{\kappa_r} \hat{H}_k^r(j\omega) + \sum_{k=1}^{\kappa_c/2} \hat{H}_k^c(j\omega) + \mathbf{D}$$

• Real-only poles

$$\hat{H}_{k}^{r}(j\omega) = \frac{\mathbf{R}_{k}^{r}}{j\omega - a_{k}^{r}}$$
$$\hat{H}_{k}^{r}(j\omega) = -\frac{a_{k}^{r}\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}} - j\frac{\omega\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}}$$
$$\Re\hat{H}_{k}^{r}(j\omega) = -\frac{a_{k}^{r}\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}} \pm 0 \Longrightarrow \mathbf{R}_{k}^{r} \pm 0$$

$$\hat{H}(j\omega) = \sum_{k=1}^{\kappa_r} \hat{H}_k^r(j\omega) + \sum_{k=1}^{\kappa_c/2} \hat{H}_k^c(j\omega) + \mathbf{D}$$

• Real-only poles

- Direct Matrix

$$\hat{H}_{k}^{r}(j\omega) = \frac{\mathbf{R}_{k}^{r}}{j\omega - a_{k}^{r}}$$
$$\hat{H}_{k}^{r}(j\omega) = -\frac{a_{k}^{r}\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}} - j\frac{\omega\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}}$$
$$\Re\hat{H}_{k}^{r}(j\omega) = -\frac{a_{k}^{r}\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}} \pm 0 \Longrightarrow \mathbf{R}_{k}^{r} \pm 0$$

 $D \pm 0$

$$\hat{H}(j\omega) = \sum_{k=1}^{\kappa_r} \hat{H}_k^r(j\omega) + \sum_{k=1}^{\kappa_c/2} \hat{H}_k^c(j\omega) + \mathbf{D}$$

• Real-only poles

- Direct Matrix

$$\hat{H}_{k}^{r}(j\omega) = \frac{\mathbf{R}_{k}^{r}}{j\omega - a_{k}^{r}}$$
$$\hat{H}_{k}^{r}(j\omega) = -\frac{a_{k}^{r}\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}} - j\frac{\omega\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}}$$
$$\Re\hat{H}_{k}^{r}(j\omega) = -\frac{a_{k}^{r}\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}} \pm 0 \Longrightarrow \mathbf{R}_{k}^{r} \pm 0$$

• Complex poles

 $\Re \hat{H}_k^c(j\omega) \pm 0. \Rightarrow$

$$.CPR(\omega) = \left(-\Re a_k^c \Re \mathbf{R}_k^c - \Im a_k^c \Im \mathbf{R}_k^c\right) + \omega^2 \left(-\Re a_k^c \Re \mathbf{R}_k^c + \Im a_k^c \Im \mathbf{R}_k^c\right) \pm 0, \forall \omega$$

$$\hat{H}(j\omega) = \sum_{k=1}^{\kappa_r} \hat{H}_k^r(j\omega) + \sum_{k=1}^{\kappa_c/2} \hat{H}_k^c(j\omega) + \mathbf{D}$$

• Real-only poles

- Direct Matrix

$$\hat{H}_{k}^{r}(j\omega) = \frac{\mathbf{R}_{k}^{r}}{j\omega - a_{k}^{r}}$$
$$\hat{H}_{k}^{r}(j\omega) = -\frac{a_{k}^{r}\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}} - j\frac{\omega\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}}$$
$$\Re\hat{H}_{k}^{r}(j\omega) = -\frac{a_{k}^{r}\mathbf{R}_{k}^{r}}{\omega^{2} + a_{k}^{r2}} \pm 0 \Longrightarrow \mathbf{R}_{k}^{r} \pm 0$$

 $D \pm 0$

Linear Matrix Inequalities (*Extremely* efficient)

31

• Complex poles

 $\Re \hat{H}_k^c(j\omega) \pm 0. \Rightarrow$

$$.CPR(\omega) = \left(-\Re a_k^c \Re \mathbf{R}_{\mathbf{k}}^{\mathbf{c}} - \Im a_k^c \Im \mathbf{R}_{\mathbf{k}}^{\mathbf{c}}\right) + \omega^2 \left(-\Re a_k^c \Re \mathbf{R}_{\mathbf{k}}^{\mathbf{c}} + \Im a_k^c \Im \mathbf{R}_{\mathbf{k}}^{\mathbf{c}}\right) \pm 0, \forall \omega$$

Convex formulation

$$\begin{split} \underset{\mathbf{R}_{k}^{c},\mathbf{R}_{k}^{c},\mathbf{D}}{\text{minimize}} &\sum_{i} \left| \Re H_{i} - \Re \hat{H}(j\omega_{i}) \right|^{2} + \sum_{i} \left| \Im H_{i} - \Im \hat{H}(j\omega_{i}) \right|^{2} \\ \text{subject to} \\ \mathbf{D} \pm 0 \\ \mathbf{R}_{k}^{r} \pm 0 \forall k = 1, \dots, \kappa_{r} \\ -\Re a_{k}^{c} \Re \mathbf{R}_{k}^{c} + \Im a_{k}^{c} \Im \mathbf{R}_{k}^{c} \pm 0 \forall k = 1, \dots, \kappa_{c} \\ -\Re a_{k}^{c} \Re \mathbf{R}_{k}^{c} - \Im a_{k}^{c} \Im \mathbf{R}_{k}^{c} \pm 0 \forall k = 1, \dots, \kappa_{c} \end{split}$$
Linear Matrix Inequalities (Extremely efficient)

where

$$\hat{H}(j\omega) = \sum_{k=1}^{\kappa_r} \frac{\mathbf{R}_k^r}{j\omega - a_k^r} + \sum_{k=1}^{\kappa_c} \frac{\mathbf{R}_k^c}{j\omega - a_k^c} + \mathbf{D}$$

Final Optimization Problem

Circuit Module (Netlist/VerilogA-Dynamical Model)

Outline

Motivation for Compact Dynamical Passive Modeling

- What is Passivity?
- Existing Techniques
- Rational Fitting of Transfer Functions

Results

Block diagram of the LINC power amplifier architecture

Hamiltonian Matrix Based Passivity Test

Model is passive if the associated Hamiltonian matrix has no purely imaginary eigen value

Example: 8-Port Power/Gnd Distribution Grid

Example: 4-Port Inductor Array

Comparison

Structure	Number of Ports	Number of Poles	Time ¹ (seconds)	
			[Suo 2008]	This Work [Matlab]
Wilkinson Combiner	3	10	83	2
Power Distribution Grid	8	20	-NA-	74
Coupled RF inductors	4	23	-NA-	72

¹Laptop: Core2Duo 2.1GHz, 3GB, Windows 7

- Summarized how to develop models from freq. response
- Proposed a Convex Optimization based modeling algorithm

• Demonstrated orders of magnitude improvement over similar techniques

• Presented an example demonstrating system level simulation of analog circuits

THANK YOU