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ABSTRACT
This paper presents a method to generate pin accurate Sys-
temC models based on the RF circuit schematics, using a
SKILL [1] based routine. This method addresses the verifi-
cation and modeling of the analog/RF circuits in the event
driven digital domain using SystemC, based on the same
data base created by the circuit designer. The proposed
method was employed to model a specific test case, com-
prising a phase locked loop in a RF receiver chain. The
reliability of the SystemC models have been proven by com-
paring the simulation results with the Verilog-AMS(wreal)
models. The pin accurate SystemC models were found to be
well suited for top down design, virtual prototyping and ver-
ification in SoC implementation. Additionally, the SystemC
models are very efficient regarding the simulation speed and
flexibility to pass abstract data types with real numbers
through the ports.
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1. INTRODUCTION
Verification is an indispensable task from the virtual proto-
typing to the verification phase in today’s design of complex,
highly integrated circuits and System on Chips. Consider-
ing the functional verification case, it is almost impossible
to verify the whole system at the transistor level, since one
simulation run would take days or even weeks to complete.
Thus modeling becomes the most critical and crucial part
of the verification task. Considering the system level design
phase, most models have been created by using Matlab or
C-based HDLs, like SystemC [2]. SystemC is a hardware
description language built on top of C++, which has the
capability to reuse existing C++ codes or libraries. Fur-
thermore, SystemC exhibit all the object-oriented features

of C++, offers more flexibility and portability of the models.
Therefore the consistency between the System level model
and the circuit level data base will also be required.

A lot of works have been done to develop an efficient way to
model and simulate the analog/RF sub systems in order to
coming up with the increasing complexity and verification
coverage requirement. The results lead to map the analog
specification either by using equivalent base band models
of the RF circuits [3] [4], or by passing real number traffic
between the models in the digital simulator [5] [6], or by
combining the two aforementioned approaches with a cus-
tom Verilog PLI function in order to get the most simula-
tion performance [7]. Most of the models of the analog/RF
subsystems are hand crafted, therefore the modeling and
verification team has to spend a lot of time to update and
validate the models to ensure the design changes have been
also covered by the models. If the model doesn’t capture the
essential behavioral of the analog circuits due to outdated
data base or inaccurate pin definition, the verification will
fail.

The proposed method intents to refine system level mod-
els based on the schematic information, this leads to the
possibility to keep the consistency between the system level
models and those generated from schematic level. On the
one hand, the connectivity information of the analog/RF sub
system can be extended into the system level and verified,
therefore the consistent virtual RF prototype can be pro-
vided. On the other hand, the behavioral models in SystemC
can be executed more efficiently, thus helps the development
of further system components as well as SoC verification.

The remainder of this paper describes the basic idea of the
generation of pin accurate SystemC models based on the
Schematic data base. Section 3 demonstrates the results of
this approach applied on a PLL system and discusses the dif-
ference about behavioral model generation in SystemC and
SystemC-AMS. The simulation results of the SystemC mod-
els has been compared to the results of the models imple-
mented using Verilog-AMS wreal approach, which has been
shown in [6]. Furthermore, the extension of the PLL out-
put signal to the base band signal and it interaction with
both the signals in the RF chain and detailed pass band
PLL model regarding the system level simulation, verifica-
tion and virtual prototyping will be discussed.



2. MODEL GENERATION AND IMPLEMEN-
TATION

Due to the computational capability constrains, the virtual
prototyping and functional verification of the RF subsys-
tems have to be done in a digital simulator, in order to
get the most simulation efficiency and to achieve the co-
Simulation feasibility in the whole SoC. Thus the automatic
generation of pin accurate SystemC RF models has been im-
plemented. Two possibilities have been considered in order
to get the structure information of the existing circuits/sub-
systems and export it accordingly. 1.) A pure netlist trans-
lator, which parses the whole netlist into SystemC bodies,
this kind of translator need two steps to generate pin ac-
curate models: first, it has to build up the hierarchy from
the flat netlist, which has been generated from the schemat-
ics. Second, generate the SystemC body of the models and
compare the schematic instance with existing instances in
the SystemC data base. While this approach is generic and
almost universal for every SPICE netlist type, it needs inten-
sive netlist keyword extension, since a mixed-signal netlist
always contains analog/digital netlists, simulation controls
and HDL behavioral models. Additionally, the data flow di-
rection in the SystemC models has to be defined based on
the circuit information, since the models in SystemC don’t
have any graphical representation like the schematic in order
to reduce the error-proneness during the modeling process.
2.) A direct translator of the given schematic using the
SKILL [1] language. Since the schematic already comprises
the hierarchy structure of the given System, the SKILL lan-
guage features the possibility to translate this directly into
SystemC. Additionally, the property of the ports can be in-
voked from SKILL to determine the I/O direction of the
ports in the equivalent, pin accurate SystemC models. Fig-
ure 1 shows the simplified flow chart of the proposed Sys-
temC model generation routine.
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Figure 1: Simplified flow chart of the SystemC
model generation process.

The SKILL routine contains two procedures: the first part
collects the structure information of the circuits, inclusive
their hierarchical levels, instance names, pins and port names.
This information is used to generate the equivalent SystemC

models. The basic structure of the models will be created
with the port definition and hierarchical connectivity. A
part of the SKILL code is shown in the listing 1:

procedure ( SCModuleOutput ( subport gotView header )

f p r i n t f ( subport s p r i n t f ( n i l ”\nSC MODULE(%s ){\n\n”
header˜>cellName ) )
; search a l l pins
f o r each ( pin gotView˜>t e rmina l s
; de f ine SC port based on pin˜>d i rec t i on
i f ( pin˜>d i r e c t i o n == ”input ” then
f p r i n t f ( subport ” s c i n <bool>%s\n” pin˜>name)
)
i f ( pin˜>d i r e c t i o n == ”output ” then
f p r i n t f ( subport ”sc out<bool>%s\n” pin˜>name)
)
i f ( pin˜>d i r e c t i o n == ”inout ” then
f p r i n t f ( subport ”s c inout <bool>%s\n” pin˜>name)
) )

; search a l l connections
f o r each (NetConnc gotView˜>nets˜>name

; de f ine a l l s c s i g na l used to
; connect pins from d i f f e r e n t components
i f ( !member(NetConnc switchedView˜>t e rmina l s˜>name)
f p r i n t f ( subport s p r i n t f ( n i l ” s c s i g n a l <bool>
%s\n” NetConnc ) ) ) )

f p r i n t f ( subport s p r i n t f ( n i l ”void s i g p r o c ( ){ ”) )
f p r i n t f ( subport ” } ; ”)
f p r i n t f ( subport s p r i n t f ( n i l
”SC CTOR(%s ){\n SC METHOD( s i g p r o c ) ;\ n\n”
header˜>cellName ) )

; search a l l ins tances ( components )
; wri te s i gna l d e f i n i t i on
)

Listing 1: Part of the SKILL code to export the
SC module bodies based on the schematic informa-
tion.

After the equivalent models of the instances have been cre-
ated, the second procedure generates the test bench based on
the top level test bench information from the schematic level.
Since some of the instances like ”sheets” are not needed, a
list has been implemented in order to exclude the instances,
which is not necessary for the modeling process.

l et (
cv = geGetEditCel lv iew ( )
; de f ine Exclude List , SC modules of the
; ins tances in the Li s t wont be generated
Exc lude L i s t = l i s t ( . . . )
; c a l l for Schecmaticstruct ()
; pr in t s c s i g na l in t e s t ca s e . cpp
f o r each (NetConnc cv˜>nets˜>name
f p r i n t f ( mainport s p r i n t f ( n i l
” s c s i g n a l <bool> %s\n” NetConnc ) ) )

; descr ibe connections in t e s t ca s e . cpp
i f ( !member( header˜>libName Exc lude L i s t ) then
index = 0
fo reach ( i n s t header˜> i n s t an c e s
i f ( !member( i n s t˜>cellName
l i s t ( ” i p i n ” ”opin ” ” i op in ” ) ) then
f p r i n t f ( mainport s p r i n t f ( n i l ”%s i%d %s (\”%s \ ”) ;\ n”
i n s t˜>cellName index
i n s t˜>cellName i n s t˜>cellName ) )
fo r each ( Terminal i n s t˜>t e rmina l s
f p r i n t f ( mainport s p r i n t f ( n i l ” i%d %s .%s(%s ) ;\ n”
index i n s t˜>cellName
Terminal˜>name Terminal˜>net˜>name ) ) )
f p r i n t f ( mainport ”\n”)



index = index + 1))

; pr in t s imulat ion contro l in t e s t ca s e . cpp
; view t e s t ca s e . cpp f i l e s
t )

Listing 2: Part of the SKILL code to generate the
SystemC top level test bench based on the schematic
information.

The complete SystemC model set can be created by execut-
ing both of the SKILL routines recursively. An additional
parameter has been created in order to define the abstraction
level of the model generation. Since the models are mostly
used for the system/block level model refinement and virtual
prototyping, transistor level information is not in the main
focus of this approach. The model generator only creates
the body of the SystemC model with connection informa-
tion, the behavioral of the models has to be implemented
manually. The simulation of the SystemC models can only
be done in the time domain, thus some of the analog speci-
fications in the frequency domain like phase noise and filter
characteristics have to be mapped into the event driven time
domain, which has been discussed in [6].

3. TEST CASE: PHASE LOCKED LOOP
The test case presented in this paper consists a fractional
N phase locked loop (PLL) system, which has been imple-
mented, verified and brought to tape out. The proposed
SystemC model generation approach has been applied on
the PLL system shown in figure 2. Based on circuit level
simulation, the PLL has following specifications:

V DD 1.0V

fout 900 MHz − 1 GHz

fref 200MHz or 25MHz

∆Σ modulator 3.rd Order

Phase noise −100 dBc/Hz @ ∆f = 1MHz

Table 1: The specification of the PLL based on cir-
cuit level simulation.

The model refinement has been initiated after the hierarchi-
cal extraction of the pin accurate PLL models in SystemC.

3.1 The SystemC PLL Model
The behavioral models in SystemC have been implemented
based on the event driven approach, since SystemC only
supports the description of hardware by using discrete event
model of computation [2]. The phase noise mapping in the
VCO has been realized by the method talked in [6]. In addi-
tion, the generation of the normal distributed jitter noise has
been implemented base on the box-muller algorithm. part
of the VCO code has been shown in listing 3.

//∗∗∗automatic generated part :
SC MODULE( b l o ck 3 s t ag e v co ca l i b r a t i on dnw ){

s c i n <double>VCON
sc in <bool>HIGHER FREQ
sc in <bool>FAST CALIBRATION
sc in <bool>SLOW CALIBRATION
sc in <double>VSS
sc in <double>VDD
sc out<BB SIG>VCO OUT

// other h i e ra r ch i ca l connection inforamtion
. . .
//∗∗∗hand cra f t ed part
// de f ine the model parameters
double v min , v max , kvco , f r eq min ;
double phasenoise , d e l t a f , std , mean , j i t t e r ;

void s i g p r o c ( ){
// ca l cu l a t e the frequency
f r e q = (pin VCON . read ()−v min )∗ kvco +freq min ;
// ca l cu l a t e the phase noise
//box muller to generate normal d i s t r i b u t i on
bool u s ed l a s t =0;
double x1 , x2 , y1 , y2 , w;
i f ( u s e d l a s t==1){
y1=y2 ;
u s e d l a s t =0;
} else {
do{
x1 =2.0∗(((double ) rand ( ) ) / ( ( double )RANDMAX)) −1 .0 ;
x2 =2.0∗(((double ) rand ( ) ) / ( ( double )RANDMAX)) −1 .0 ;
w=x1∗x1+x2∗x2 ;
}while (w>=1.0);
w=sq r t ((−2.0∗ l og (w))/w) ;
y1=x1∗w; y2=x2∗w;
u s ed l a s t =1;
}

// ca l cu l a t e the equ iva l en t timing j i t t e r
next = now + 0.5/ f r e q + J i t t e r ;
//wri te out the VCO s i gna l
VCO OUT. wr i t e ( . . . ) ;
} ;

Listing 3: Part of the SystemC VCO source code.

Listing 4 shows he automatic generated top level test bench
of the PLL based on circuit level information.

int sc main ( int argc , char∗ argv [ ] ) {
s c s i g n a l <bool> net028 , net027 ;
s c s i g n a l <bool> vco tune [ 2 ] ;
s c s i g n a l <double> vdd ;
s c s i g n a l <BB SIG> VCO outn ;
s c s i g n a l <bool> net48 ;
s c s i g n a l <bool> net048
s c s i g n a l <bool> f r e q ou t
s c s i g n a l <double> gnd
s c s i g n a l <bool> net61 , net043 , net9 ;
s c s i g n a l <bool> net023 , net037 , net050 ;
s c s i g n a l <BB SIG> VCO outp ;
s c s i g n a l <double> net047 ;
s c s i g n a l <bool> net026 ;

PLL topleve l i 0 PLL top l eve l ( ”PLL topleve l ” ) ;
i 0 PLL top l eve l .VCO Out N(VCOoutn ) ;
i 0 PLL top l eve l . VCO Out P(VCOoutp ) ;
i 0 PLL top l eve l . F Reference ( net61 ) ;
i 0 PLL top l eve l . F a s t c a l i b r a t i o n ( vco tune [ 1 ] ) ;
i 0 PLL top l eve l . I b i a s 1 00u s ou r c e ( net047 ) ;
i 0 PLL top l eve l . S l ow ca l i b r a t i o n ( vco tune [ 0 ] ) ;
i 0 PLL top l eve l . Switch Reference ( net028 ) ;
i 0 PLL top l eve l .VDD(vdd ) ;
i 0 PLL top l eve l .VSS( gnd ) ;
i 0 PLL top l eve l . f rac mode ( net027 ) ;
i 0 PLL top l eve l . r e s e t ( net026 ) ;
i 0 PLL top l eve l . sd in ( net9 ) ;

d i g i t a l c o n f i g i n t e r f a c e
i 0 ( ” d i g i t a l c o n f i g i n t e r f a c e ” ) ;
i 0 .DIV RATIO( net9 ) ;
i 0 .DS RST( net026 ) ;
i 0 .FRAC MODE( net027 ) ;
i 0 .REF SEL( net028 ) ;
i 0 .VCO TUNE( vco tune ) ;
i 0 .CFG DATA( net037 ) ;



VCO
REF

PFD CP

Divider

∆∑-Mod
DSP

PLL Event

90
0

Eq. BB signal, 

sampling time ∆tBB_signal{ I(t), Q(t), f0}

Eq. Base band models of 

the receiver chain

Loop-Filter

Figure 2: The block diagram of the PLL.

i 0 .CFG PCLK( net48 ) ;
i 0 .CFG SCLK( net023 ) ;

//models for t e s t bench conf igurat ion
//and monitoring
f r eq mete r i 0 f r e q me t e r ( ” f r eq mete r ” ) ;
i 0 f r e q me t e r . av e r ag e f r e q ( net048 ) ;
i 0 f r e q me t e r . out ( f r e q ou t ) ;
i 0 f r e q me t e r . in (VCO outp ) ;

c f g da ta i 0 c f g d a t a ( ”c f g da ta ” ) ;
i 0 c f g d a t a . data ( net037 ) ;
i 0 c f g d a t a . pc lk ( net023 ) ;
i 0 c f g d a t a . s c l k ( net48 ) ;

c l k gen i 0 c l k g e n ( ” c l k g e n v e r i l o g ” ) ;
i 0 c l k g e n . c l k ou t ( net61 ) ;

// simulat ion contro l
. . .

Listing 4: The overall pll testbench.

3.2 Involving SystemC-AMS in the Concept
While SystemC was initially developed to model digital sys-
tems, the SystemC-AMS 1.0 extensions [8] offers the possi-
bility to model analog / Mixed-Signals systems by using of
dedicated simulation kernel synchronized with the SystemC
event driven kernel [9]. The Timed Data Flow (TDF) [10]
class allows the direct implementation of continuous time
Laplace transfer functions, which make the implementation
of the loop filter of the PLL easier. The Synchronization
slows down the simulation about 5 second, as shown in the
table 2, therefore a Matlab script has been implemented for
translating the analog loop filter transfer function into the
equivalent discrete time SystemC model directly.

3.3 Comparison with other HDL
The same system has been modeled in the Verilog-AMS HDL
based on the wreal approach shown in [6] in order to eval-

uate the accuracy of the SystemC model implementation.
The overall PLL system runs in the cadence NCSIM digital
simulator. A closed loop simulation of the PLL has been run
to review the two models regarding the simulation time and
phase noise results. The simulation times for 500 µs tran-
sient simulation have been compared in the table 2. All PLL
models have been implemented according the specifications
shown in table 1.

HDLs Simulation time

SystemC 2.2.0 31s

SystemC-AMS 1.0 36s

Verilog-AMS(Wreal) 40s

Table 2: Simulation execution times

As expected, no significant difference regarding the simu-
lation time can be observed, given the fact that all three
simulation are done in the event driven digital simulator
completely. Despite its small advantage the SystemC im-
plementation does not require any special simulator nor the
AMS-extensions. therefore it can be used in almost any dig-
ital centric design flow today.

The phase noise results of the simulation are plotted in the
figure 3 and 4, from which it can be observed that the Sys-
temC models exhibits the best simulation efficiency without
losing the accuracy of the models considering the PLL phase
noise.

Additionally, as previously anticipated in earlier section, the
advantages of the SystemC modeling approach lies in the
fact that the SystemC modules are based on the C++ classes
and offers its object oriented features. A shown in the figure
2, the output signal structure of the PLL can be extended
to a base band signal array without any modification of the
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Figure 3: Phase noise simulation result of the Sys-
temC PLL model.

connectivity information, by creating the signal with user
defined data types as shown in listing 5.
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Figure 4: Phase noise simulation result of the
Verilog-AMS PLL model.

For the detailed PLL model, the divider is triggered by the
pass band VCO oscillation event V CO out, in order to get
the accurate response of the equivalent SystemC RF blocks
in the PLL. This can be realized by overloading the == oper-
ator in the PLL SIG class, which permits only the changes
in the V CO out are considered in the sensitive list. Further
considerations like the interaction between the PLL output
signal and RF base band signal can be resolved by overload-
ing the operators.

class BB SIG{
public :
bool VCO out
double f0 , AI , AQ, PN, deltaF ;
BB SIG ( ) { . . . }
BB SIG operator == ( const BB SIG & s i g )
const{
return ( s i g . VCO out == VCO out ;
}
BB SIG operator= ( const BB SIG & s i g ) {
VCO out=s i g . VCO out ;
// f0 , AI , AQ, PN, deltaF . . .
}
// add i t i ona l operator over loading

. . .
} ;

Listing 5: Mixed pass band / base band signal type
implementation.

For the RF receiver chain, only the part of the PLL output
signal that is required in the base band modes are needed,
in this case the equivalent base band amplitudes I(t), Q(t),
the center frequency f0 and the instantaneous phase phi(t)
describing a potential phase modulation as well as the phase
noise present in the LO signal, respectively.

4. CONCLUSIONS AND OUTLOOK
In this paper, we have proposed a method to generate pin
accurate SystemC RF models based on the circuit informa-
tion. This approach has been demonstrated to generate the
event driven SystemC models for a fractional-N PLL system.
The accuracy and simulation performance of the SystemC
models have been evaluated with the results obtained with
the event driven Verilog-AMS models. Besides a satisfactory
match between the simulation results, the SystemC models
exhibits the best simulation performance.

Additionally the multi frequency simulation capability of
SystemC can be demonstrated by combining the pin accu-
rate pass band PLL model with other RF base band mod-
els without any modification of the connectivity informa-
tion. The flexibility and portability of an open source C++
based HDL allows us to verify the complete signal path based
on the same hierarchical information from schematic level.
Thus increases the speed and reduces the error proneness of
the model generation process. Furthermore, the proposed
method will be applied to a larger and more complex de-
sign, which has been discussed in [11], in order to speed
up the system design and verification of the digital centric
nano-scale CMOS RF system architecture.
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