Modeling and Simulation of a Manycore PCR-CE Lab on Chip for DNA Sequencing using SystemC/SystemC-AMS

amr.habib@soc.lip6.fr

francois.pecheux@lip6.fr

BMAS 2010 - September 24, 2010 - San Jose

Presentation Overview

-Part I: System analysis

- Lab-on-Chip for DNA analysis
- DNA Amplification by PCR (Polymerase Chain reaction)
- Separation by CE (Capillary electrophoresis)
- Optical detection and shaping
- Multicore processing and PCR control
- Multithreaded Smith-Waterman

Part II: Mathematical Modeling (lightspeed presentation)

Part III: Hardware/Software Modeling

- SystemC-AMS for AMS parts
- SystemC + SOCLIB for digital parts
- Embedded application: Multithreaded Smith-Waterman

Results & conclusion

Amplification by Polymerase Chain Reaction (PCR)

Polymerase Chain Reaction

Principal reagents:

- DNA template
- Two primers
- Taq polymerase
- dNTPs

Each PCR Cycle is composed of three phases:

- 1. Denaturation phase
- 2. Annealing phase
- 3. Extension phase

Polymerase Chain Reaction

1. Denaturation

Polymerase Chain Reaction

2. Annealing

Polymerase Chain Reaction

3. Extension

Polymerase Chain Reaction

Cycles of PCR

2. Sequencing and detection of DNA

2. Sequencing and detection of DNA

Sanger method

- Use of « ddNTP » chain terminators

Extends the chain

terminates the chain

Sanger method

Capillary electrophoresis

Processing and control

3. Multicore Processing and control

MultiProcessor System on chip (MPSoC):

- Control temperature
- Control cycle duration
- Signal processing
- Information processing
 - Align DNA sequences
 - Compare acquired sequence with detected sequences
 - Search within a database
 - etc ...

Modeling the denaturation phase

60 seconds at T = 95°C -> Enzyme deactivation

$$(-r_A) = \left(-\frac{da}{dt}\right) = K_d a^{\alpha}$$

$$a = \frac{E(t)}{E_0} \qquad \qquad K_d = K_{do} e^{-\frac{E_d}{RT}}$$

Modeling of extension phase

The rate of generation of DNA in the first cycle:

$$\frac{dC_D}{dt} = K_1^* \cdot \frac{C_{D0}}{y}$$

CD0 = Initial concentration of target DNA in M CD = Concentration of target ADN after time "t" in M K_1^* = Incorporation rate of nucleotides in one DNA strand in the first cycle y = Number of nucléotides constituting one target sequence

Modeling of extension phase

The amplification rate of DNA in the first cycle is given by:

$$\frac{dN}{dt} = K_1$$

$$N = \frac{C_D}{C_{D0}}$$

$$K_1 = \frac{K_1^*}{y}$$

Modeling of extension phase

The amplification rate of ADN in the nth cycle is given by:

$$\frac{dN}{dt} = 2^{n-1} K1$$

$$K_1 = K_0 \ e^{-\frac{E_a}{RT}}$$

Exponential growth

Modeling of PCR

Modeling of extension phase

Enzyme deactivation effect :

$$\frac{dN}{dt} = K_r \cdot \beta_r$$

$$\beta_n = \frac{E_0 \ a_n}{C_{D0} \ 2^n}$$

quasi-linear growth

Modeling of sanger termination

Probability of termination at base 'N':

...

$$p_n = R_N \frac{[ddNTP]}{[dNTP]}$$

If sequence begins with A,C,G:

$$d_{1a} = p_a D_0$$

$$d_{1c} = p_c D_0 (1 - p_a)$$

$$d_{1g} = p_g D_0 (1 - p_a) (1 - p_c)$$

Modeling of sanger termination

The molar amount terminating at base number 'i':

$$d[i] = X[i]D_0$$

D₀: inital molar amount, the result of the PCR stage

$$X[i] = \frac{X[i-1](1-p_{i-1})p_i}{p_{i-1}}$$

Modeling of capillary electrophoresis

Assuming that diffusion is the only peak broadening mechanism that is present: Gaussian concentration profile with variance:

$$\sigma^2 = 2Dt_m$$

D: diffusion coefficient

t_m: migration time from injection to the detection point

Modeling of capillary electrophoresis

Migration time

 $t_m = \frac{l}{v}$

Velocity

 $v = \mu_e E$

Full width

$$w_t = \left(\frac{t_m}{l}\right) w_s$$

Modeling of optical detection

- Excitation from a source at 488nm fluorescence from labels at: 500, 540, 570, 590 nm

- 4 photodiodes + dichroic filters

- Amplification and filtering

Modeling of optical detection

Modeling of optical detection

Band pass filters: Fabry-Perot

$$T = \frac{(1-R)^2}{1+R^2 - 2R\cos\delta}$$

$$\delta = \left(\frac{2\pi}{\lambda}\right) 2 \, nl \cos \theta$$

Modeling of optical detection

Photodiode

Photocurrent

 $I_{out} = RP_{in}$

Noise current (not implemented)

$$\langle i_s^2(t) \rangle = 2q(I_{dark} + RP)B$$

 $\langle i_{Th}^2(t) \rangle = \frac{4K_BT}{R}B$

How to model and simulate multidomain AMS ?

- SystemC-AMS
- How to model and simulate MPSoC architectures ?

– SystemC + SoCLib library (www.soclib.fr)

- How to develop massively multithreaded applications on these architectures ?
 - Kahn Process Network paradigm and Smith-Waterman DNA sequencing application

AMS & Analog: SystemC-AMS TDF

- Developed by Fraunhofer IIS/EAS Dresden, Contribution by TU Vienna
- Supported by NXP, STMicroelectronics, Bosch, Infineon, ...
- Supported by OSCI: LRM, User's Guide available
- Is a standard
- Proof of Concept freely available, access via OSCI website

TDF Cluster: PCR part (1)

TDF Cluster: Sanger & CE part (2)

TDF Cluster: Optical detection (3)

Digital: SystemC + SocLib Library

- National project, ended March 2010
- 11 Labs, 6 companies
- LGPL
- More than 100 BCA and TLM models
 - Based on SystemC
 - Processors, memories, Noc, peripherals
 - VCI/OCP compliant, interoperable components
 - Dedicated to MPSoCs, but proven useful for Monoproc systems
- SocLib Live-CD available on the website

MPSoC generic tile

2D-Mesh shared memory NUMA architecture with NoC

Page • 38

Smith - Waterman

Smith-Waterman Algorithm

-Seq1 = X_1, \dots, X_M -Seq2 = Y_1, \dots, Y_N Score Matrix (4x4) for (A,C,T,G) 'F' Matrix (MxN)

$$F(i,j) = Max \begin{cases} F(i-1,j-1) + S(x_i,y_j) \\ F(i-1,j) + S(x_i,-) \\ F(i,j-1) + S(-,y_j) \\ 0 \end{cases}$$

Smith-Waterman

Smith Waterman

Sequence alignment

		С	Т	G	G
	0	0	0	0	0
С	0	10	6	5	4
Α	0	6	7	3	2
Т	0	5	16	12	11
Т	0	4	15	13	10
G	0	3	11	25	23

Optimal Alignment CATT G C-T G

Part III: KPN-like multithreaded embedded application

Results

Thermo-cycling

PCR Results

Deactivation of polymerase

PCR Results

Amplification ratio of DNA

Modeling of capillary electrophoresis

Modeling of Sequencing Modeling of optical detection

Output of detection stage:

Conclusion

Success story !

- Complex application captured with SystemC AMS extensions
- Chemical kinetic reactions, electrophoresis, optics, ADC, DAC in AMS-TDF (digitally assisted)
- 4 minutes to simulate PCR-CE and 1000 samples comparison
- Changing MPSoC operating frequency during simulation !
- Wish: deactivate TDF cluster simulation once DNA sequence acquired to speed up simulation
- Living project, architecture exploration, design refinement