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ABSTRACT
Fault injection methods have been used for analysing de-
pendability characteristics of systems for years. In this pa-
per we propose a practical mixed-signal fault injection flow
that is fast as well as accurate. Fault models are imple-
mented directly into devices and other electrical elements on
the circuit using behavioural fault description in Verilog-A
language. So far, we described three classes of most com-
mon faults: i) Single event transients, ii) Electro-Magnetic
interference and iii) Power disturbance faults. As an exam-
ple for dependability evaluation, few test circuits have been
prepared and the results of fault injection on those designs
have been reported.
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1. INTRODUCTION
Over the last several years, as chips feature sizes decrease
to Ultra Deep Sub Micron (UDSM) technology, their sus-
ceptibility to outside faults increases, therefore in designing
any system, reliability evaluation is an important step to
ensure system’s dependability in the future. Today, method
of choice to analyse or validate this is fault injection.

Fault injection techniques can be classified into two cate-
gories: i) software-based fault injection, whereas the fault is
injected in the software simulation model of the system and
can be injected at circuit, logic or system level abstraction
and ii) hardware-based fault injection where a physical sys-
tem is used for experiment. In traditional simulation based
fault injection, fault are usually injected at the same-level
of abstraction as the design (mostly logic level or higher).
Although the lower level fault injector (at circuit level) ex-
ists, they’re not very common due to the large performance
overhead of lower-level SPICE simulation.

The main advantage of simulation-based fault injection is
the high controllability and observability it provides over
the injection process This allows users to choose where and
when the injection occurs and observe the fault behaviour
and propagation through-out the system. Users can extract
reliability parameters such as fault latency, derating rate,
propagation and coverage for each module or for the entire
system. Another advantage of simulation-based fault injec-
tion is that they can be used early in the design process for
early discovery of design deficiencies.

As mentioned before, circuit level fault injection techniques
sufferes from performance issues. Furthurmore, CAD tools
are not well developed to perform verification tasks at this
level. Standard circuit level simulators does not support
extensive testbenches or verification schemes. On the other
hand, RTL and gate level simulation are fast but they do not
include enough details for accurate modelling of many fault
models, specially for deep sub micron processes and beyond.
Besides that, nowaday, each System-on-Chip may contain
many analog and digital cores and traditional logic level fault
injection techniques do not support analog or mixed-signal
designs.

To address these issues, we developed a fault injection flow
for mixed-signal environment and described three class of
transient fault models. We address the performance issue
of circuit-level fault injection without losing accuracy. Our
proposed injection flow is as accurate as circuit-level fault
injection and yet, it is as fast as logic/RTL level fault injec-
tion.

Our flow consists of logic-level and circuit-level mixed-signal
cosimulation. We inject fault at circuit level. Near the fault
site, where it matters and we require an accurate simulation,
we incorporate SPICE simulation. We observed that most
of the fault models will be manifested as an error outside of
the target fault module. For simplicity and efficiency reason,
we chose a design’s hierarchy module as our fault grauality.
When fault is manifested as an error, it is visible on the
information state, so there is no need for SPICE level sim-
ulation anymore. At this state, logic level simulation have
enough accuracy to carry on the fault simulation. Gence,
the rest of the design is modeled and simulated in RTL level
using logic simulation. With logic simulation we can com-
pensate for the performance penalty of circuit-level SPICE
simulation. More over, by using the previous interface of
the design (HDL testbench or verification scripts) we ensure
that our verification codes are still intact and valid during
the fault injection session. Since the main fault injection
process happens at circuit-level we can inject faults on Ana-
log modules or modules that dont have the neccessary HDL
description (for example SRAM, DRAMs, delayed Latches,
PLLs, etc).

Main contribution of our work lies in our fault modeling ap-
proach. Nature of our mixed-signal flow allows us to incor-
porate analog and mixed-signal fault models which increases
the accuracy of fault models. We propose the using of be-



havioral language (like Verilog-A) to model variety classes
of fault models. Simpler fault models can be approximated
at circuit level using available spice primitives (macaromod-
eling). For example, traditional modeling of Single Event
Transient (SET) at circuit level usually consists of a current
source at transistor source or drain. Although this approxi-
mation can be fairly accurate for submicron processes, how-
ever as aggressive device scaling into deep submicron level,
these models are not accurate anymore. As IC device sizes
continue to shrink the fault models are becoming more and
more complicated and they can no longer be implemented
solely using primitives. Also many fault models to be devel-
oped accurately require access to internal nodes, parameters
or structure of the transistor or device model which is not
available at circuit level. This motivates us to move to lower
level of abstraction and directly implement our model inside
the transistor or devices using behavioral description lan-
guage such as Verilog-A. Verilog-A is the industry standard
modeling language for analog circuits. It allows rapid de-
velopment of new fault models and it is supported by many
CAD vendors.

The rest of this paper is organized as follows: The next sec-
tion is a fast review of selected litratures and methodologies
on fault injection. Later in section 3 we describe fault mod-
els and their implementation details. In Sec. 4 we present
our fault injection process in detail. Sec. 5 demonstrate ex-
perimental setup and the results of our approach. Finally,
we conclude in Sec. 6.

2. PREVIOUS WORKS
Many researchers have investigated fault effects in circuits
during the last decades. As the result, variety of fault injec-
tion methods have been proposed and used over the years.
Readers can refer to [1, 2, 3] for a survey on fault injection
methods and techniques.

As mentioned before, fault injection process can be software-
based or hardware-based. The software based fault injection
consists of two categories: i) software-implemented fault in-
jection and ii) simulation-based fault injection. software im-
pelemented fault injector includes [4, 5, 6, 7]. In simulation-
based fault injection, faults are injected in a simulation model
of the circuits. Simulation based fault injecttion can be
made either at the electrical (SPICE) or logic (HDL) level or
higher depending on the design’s abstraction level. Fault’s
can be injected with means of additional elements (sabo-
teurs), via alteration of simulation model (mutants) or through
built-in simulator commands. Some of the more popular
simulation-based fault injector tools are [8, 9, 10, 11, 12].
On the other hand, hardware-based injector like [13, 14, 15]
inject fault in pin-level or [16, 17] stress the hardware by
inducing soft errors with heavy-ion radiation.

Simulation-based fault injection tool address different ab-
straction level with high observability and controllability,
therefore they’re becoming more and more popular. These
methods are usually developed for digital circuits and work
at logic level of abstraction or higher, as the result, they are
not much suitable for analog or mixed-signal environment.
One of the early work on mixed-signal fault injection is [18].
Other example of circuit-level fault injection tools are [19,
20, 21] and [22].

3. BEHAVIORAL FAULT MODELS
Fault models are anomalies in the system and hence, they
inherently cannot be accurately described with the means
of standard electrical primitives. As CMOS technology con-
tinues to shrink, fault models are becoming more and more
complicated and fault modeling in circuit or netlist level
does not provide the required fidelity. As the result, fault
injection is becoming harder, less accurate and in some cases
impossible to perform. Designers are usually forced to ap-
proximate fault behaviors to be able to add their effect to the
circuit and in doing so, they would reduce precision. For a
reliability researcher or engineer, it is very important to have
a precise description of faults and be able to rapidly model
and implement new fault models as the design or technology
evolve.

To develop an accurate fault model, we describe the behav-
iors of fault and integrate them within the device model or
as a standalone element. Verilog-A language provides an
accurate, yet reasonably fast way to design a fault model
and inject it directly into electrical elements. Fault can be
embedded inside Verilog-A module and the resulted faulty
element can be attached to circuit netlist as a mutant us-
ing an external circuitry (X). With this approach, We can
explore variety of fault models. Currently we’ve developed
the fault classes:

• Single Event Transients/Upset (SET/SEU)

• Electro-Magnetic/Radio-Frequency Interference (EMI)

• Power Supply/Power Line Disturbance (PLD)

3.1 Single Event Transients/Upset (SET/SEU)
When a radioactive particle such as neutron or alpha parti-
cle strikes a sensitive region in a semiconductor device like
transistors, the resulting electron-hole pair generation can
cause a transient current pulse that may alter the logical
state of that circuit node [23]. This transient current may
consequently propagate to memory elements or primary out-
puts and eventually, lead to erroneous circuit behavior and
cause system failure.

Over the years, many approaches have been proposed to
model charge deposition current. Two of the more popular
models are single and double exponential function as shown
in equation 1 [24, 25]. Here τα is the charge collection con-
stant of pn-junction, τβ is the time constant for establishing
the electron-hole track. An alternative model is single ex-
ponential model [24] shown in equation 2. Q denotes to the
collected charge and τ is the pulse-shaping collection time
parameter. Here K is a constant and equals to 2√

π
. Behav-

ioral description of this model is given in Code 1.
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Figure 1: generic fault injection flow

module mosfet(drain, gate, source, bulk);

inout drain, gate, source, bulk;

electrical drain, gate, source, bulk;

...

parameter real TYPE = 1.0 ;

parameter real TINJECT = ***e-9 ;

parameter real Q = ***e-12 ;

parameter real TO = ***e-9 ;

parameter real TB = ***e-9 ;

analog

begin

@(initial_step) ...

... // BSIM Transistor Equations

‘ifdef SET_MODEL_I

if( $abstime > TINJECT )

begin

$strobe(S̈ET INJECTED, @ %e

TINJECT=%e¨ , $abstime, TINJECT);

//double exponential SET model

I(drain, bulk ) <+ TYPE * Q/(TO-TB)

*(exp(-1*(($abstime-TINJECT)/TO))

-exp(-1*(($abstime-TINJECT)/TB)));

end

‘endif

‘ifdef SET_MODEL_II

if( $abstime > TINJECT )

begin

$strobe(S̈ET INJECTED, report @ %e

TINJECT=%e¨ , $abstime, TINJECT);

//single exponential SET model

I(drain, bulk ) <+ TYPE * 1.12838*(Q/TO)

*sqrt( ($abstime-TINJECT)/TO)

*exp(-1*(($abstime-TINJECT)/TO));

end

‘endif

end

endmodule

Code 1: Behaviroal model of SET in Verilog-A

3.2 Electro-Magnetic/Radio-Frequency Inter-
ference (EMI)

Electromagnetic interference (EMI ) refers to any type of in-
terference that can potentially disrupt or degrade function-
ing of electronic systems. Modern integrated circuits face
potential failures from electromagnetic disturbances. It is
important to study and model the behavior of ICs in hostile
EMI environment. Lightings, voltage lines, radar or radio
transmission, wireless network and GSM bursts are usual
source of EMI. In System-On-Chip components which in-
cludes RF IP cores similar problems exists as well, because
of the RFI generated form the operation of RF circuitry
can reach baseband circuit and induce failure. Electronic
interconnects, cables or PCB traces can couple EMI in the
system. Also, inside the chip metal interconnect like power,
ground or clock network works as receiving antennas [26]
and can induce current (mA) into the system.

Privously, [27] studied the behaviour of transistors and
other electrical elements and their I-V characteristic changes
under EMI. [28] studies EMI effects on CMOS devices,
specifically, CMOS op-amp. They assume that EMI-induced
distortion phenomena are limited to the input differential
pair and model it as a continuous-wave (CW) RFI superim-
posed on the nominal input signals (which forces the transis-
tors to periodically switched off by large RF disturbances).
However, EMI may be injected from several nodes. For ex-
ample, through the power supply lines, through the sub-
strate node, through the clock network or the input termi-
nals.

We simulate EMI by injection of a pulse modulated high-
frequency RF signal on selected pins (like clock or data pins)
or nodes inside the circuit ( substrace, nodes with antenna
behavior, power network, clock network, etc.).

3.3 Power Supply/Power Line Disturbance (PLD)
As we scale down the supply voltage of chips, the noise mar-
gin will decrease, hence circuit become more susceptible to
power faults. Power supply disturbance are either caused by
environmental disturbance (e.g. EMI/EMC) or by circuits
internal switching activity. These disturbances can affect
both logic and the supporting infrastructure like power grid
and clock tree.

In deep-submicron processes, common power supply related



transient fault models includes power-supply noise [29, 30],
power supply voltage overshoot undershoot and ground bounc-
ing [31]. All of these faults require SPICE simulation for
modeling therefore analysis of such fault models are very
time consuming.

We can analyze the influence of power supply voltage dis-
turbances and evaluate the fault tolerance of circuits with
means of fault injection. We inject fault at circuit power
grid. Instead of modeling a distributed power grid with
RC network we use a unified Verilog-A model for the entire
power network and describe the behavior of power supply
disturbances into this model.

4. FAULT INJECTION FLOW
This section describes the proposed fault injection flow. Our
fault injection flow is an integrated framework that provides
facilities to conduct fault injection studies. In desinging this
flow, accuracy, practicality and usability were our main con-
cerns.

Transient faults can be injected into any of the locations
inside the target module. The timing of the injection is
configured as a parameter in fault model. The selection
of when and where of the fault injection are either chosen
by the user or based on randomized injection. Variety of
fault models have been developed in Verilog-A and are in-
serted to Electrical elements. These faults are inserted to
the netlist. Circuit behavior is observed through simulation
trace. For each fault injection, the reliability parameters
such as fault latency, derating rate, propagation and cover-
age are extracted. After that, a report containing statistics
of experiment is generated.

This flow consists of three independent phases: I) fault in-
jection phase, II) fault simulation phase and III) evaluation
phase. Figure 2 shows an overview of our fault injection
flow.

• fault injection: Fault injection is the foundametal
step of the flow. First, we select a fault site within the
design, for example, inside a processor design, a fault
site can be its alu, register file SRAM, pll, or any other
module. Fault site will be simulated in SPICE. This
module is then converted to its equivalent circuit level
netlist (through synthesizing to gate-level and netlist
substition for digital module or directly replacing the
analog parts for circut netlist). The resulted netlist
is analyzed for extracting potential fault locations and
times for injection experiments. User should provide
fault model, total number of fault injection experiment
to perform and define the criteria to when finishing the
experiments.

Later we inject a faulty transistor, element or other
faulty components which are implemented using verilog-
A directly into this circuit-level netlist as an external
subcircuit or the X element. User will select the fault
model from provided fault library. To save perfor-
mance, we try to keep the total number of inserted
Verilog-A components as minimum as possible. To
do so each netlist should contain a minimal number
of fault injector (perferably one). For this reason, to

Figure 2: generic fault injection flow



perform fault injection at two different location in the
netlist, we regenerate the netlist each time with speci-
fied Verilog-A injector. Flow will automatically handle
this. After the target netlist is created the tool gener-
ate necessary scripts to perform fault simulation and
analysis.

• fault simulation: We incorporate a mixed-signal sim-
ulation at three-level of abstraction, namely, device
level simulation for fault model, circuit level simula-
tion for fault site or target module and logic level sim-
ulation for rest of the design (not near the fault site).
This architecture allows an accurate simulation of fault
near the fault site. When the fault is converted to er-
ror, we have still an accurate simulation in logic level
for the rest of the design.

Our flow consists of mixed-signal co-simulation of VHDL
or Verilog with SPICE. Currently most of industrial
CAD simulators support this kind of mixed-signal sim-
ulation through Verilog-PLI or other proprietary in-
terface. By default we use a combination of Mentor-
Graphics ModelSim for logic simulation and Synopsys
HSIM to perform SPICE simulation.

• evaluation: After fault co-simulation, simulators pro-
duce two traces: i) golden traces, that is free from any
fault injection and ii) faulty trace that contains the
fault effects. At this step, we investigate the difference
between our golden run and faulty runs and report the
diferences. From this we extract reliability parameters.

5. DEMONSTRATION
To illustrate how the mechanism of our fault injection flow
works, we setup an experimental environment and performed
fault injection on selected testcases. The examples chosen
for this purpose are 8-bit digital up-down counter (Counter),
a traffic light controller finite state machine (FSM ), a 16-
bit standard ALU module (ALU ), a 256-bit 6-Transistor
SRAM in spice (SRAM ) and universal asynchronous re-
ceiver/transmitter circuit (UART ). The library we used for
synthesize and simulation is based upon TSMC 0.25um tech-
nology. Fault model characteristic and parameters used in
this demonstration are described in Table 1. All of them
are injected at random time during the simulation. Figure
3 shows an examples of these injections.

Figure 4 contains the result of fault injection. For each test-
case we report the failure rate of the circuit. Failure is de-
fined as any deviation from standard (golden) execution in
circuit’s primary outputs. In many cases, we may inject a
fault in circuit however, due to error masking factors, system
may not fail and continue to function properly. Failure rate
is the total number of failed experiment per total executed
experiments (in our case 1000 fault injection per testcase).

6. CONCLUSION
Fault injection is a valuable asset for evaluating circuit’s
dependability. In this paper we proposed a mixed-signal
fault injection flow. We use spice simulation near the fault
site and logic co-simulation elsewhere, therefore our flow en-
sures both accuracy and performance. Our flow incorpo-
rates behavioral fault modeling at circuit and device level (in

Fault Model parameters

SET Q=10pc, with TO = TB = 10ns , Random
injection, Two exponential model

EMI 100MHz CW RF signal, Vpeak=0.5V ,
100ns pulse envlope, Random injection

PLD 100ns duration, Voltage shortage (from
2.5V to 0V ) on VDD line, Random injec-
tion

Table 1: Fault model details

Verilog-A language). By supporting behavioral fault mod-
eling in Verilog-A, researcher can rapidly develop accurate
fault models and simulate them on practical designs. Fur-
thermore, it allows users to use their default testbenches
and verification scripts, Hence it provide a practical facility
to perform fault injection studies. To validate this flow, we
have developed different classes of fault models and applied
fault injection process on selected circuits.
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